
Recent Advances in Multi-GPU Graph
Processing

G. Carbone1, M. Bisson2, M. Bernaschi3, E. Mastrostefano1, F. Vella1

 1Sapienza University Rome - Italy

2NVIDIA U.S.
3National Research Council – Italy

March 2015

Why Graph Algorithms
• Analyze large networks

– Evaluate structural properties of networks using common graph
algorithms (BFS, BC, ST-CON, ...)

– Large graphs require parallel computing architectures

• High performance graph algorithm:
– Most of graph algorithms have low arithmetic intensity and irregular

memory access patterns

– How do GPU perform running such algorithms?

– GPU main memory is currently limited to 12GB

– For large datasets, cluster of GPUs are required
2

Large Graphs

• Large scale networks include hundred million of nodes

• Real-world large scale networks feature a power law degree
distribution and/or small diameter

Vertices # Edges Diameter

wiki-Talk 2.39E+06 5.02E+06 9

com-Orkut 3.07E+06 1.17E+08 9

com-LiveJournal 4.00E+06 3.47E+07 17

soc-LiveJournal1 4.85E+06 6.90E+07 16

com-Friendster 6.56E+07 1.81E+09 32

Source: Stanford Large Network Dataset Collection
3

Distributed Breadth First Search

• Developed according to the Graph 500 specifications

– Generate edge list using RMAT generator

– Support up to SCALE 40 and Edge Factor 16 (where |V| = 2SCALE and |M|
= 16 x 2SCALE)

– Use 64 bits for vertex representation

• Performance metric: Traversed Edges Per Second (TEPS)

• Implementation for GPU clusters

• Hybrid Programming paradigm: CUDA + Message Passing (MPI and APEnet)

• Level Synchronous Parallel BFS

• Data structure divided in subsets and distributed over computational nodes

4

1-D BFS
• 1-D Graph Partitioning

• Balanced thread workload
– Map threads to data by using scan and search operations

• Enqueue vertices only once (avoiding duplicates)
– Local mask array to mark both local and connected vertices

• Reduce message size
– Communication pattern to exchange predecessor vertices only when BFS is

completed avoiding sending them at each BFS level

– Use 32 bits representation to exchange vertices instead of 64 bits

5

1-D Results
Weak Scaling Plot (RMAT Graph SCALE 21 – 31)

6

2-D BFS
• 2-D Graph partitioning

– Improved scalability avoiding all-to-all communications

• Atomic Operations
– Local computation leverages efficient atomic operations on Kepler

– 2.3x improvement from S2050 (Fermi) to K20X (Kepler) on single GPU

• Further reduction of message size
– Use a bitmap to exchange vertices among nodes

7

2-D Results

8

Weak Scaling Plot (RMAT Graph SCALE 21 – 33)

2-D BFS Bitmap based transfer

9

Use bitmap to exchange vertices information

With bitmap

Without bitmap

2D BFS Results on Real Graph*

Data Set Name Vertices Edges Scale EF # GPUs GTEPS BFS Levels
com-LiveJournal 4.00E+06 3.47E+07 22 9 2 0.77 14
soc-LiveJournal1 4.85E+06 6.90E+07 22 14 2 1.25 13
com-Orkut 3.07E+06 1.17E+08 22 38 4 2.67 8
com-Friendster 6.56E+07 1.81E+09 25 27 64 15.68 24

10 *Source: Stanford Large Network Dataset Collection

ST-CON

• Decision problem
– Given source vertex s and destination vertex t determine if they are

connected

– Output the shortest path if one exists

• Straightforward solution by using BFS
– Start a BFS from s and terminate if t is reached

• Parallel ST-CON
– Start two BFS in parallel from s and t

– Terminate if the two paths meet

 11

0 1 1

1 2 1

1 2

1 2 0

2

0 1

2 3 4 5

6 7 8 9

10 11 12

Parallel ST-CON

12

Distributed ST-CON

• Atomic-operations based solution
– Use atomic operations to update visited vertices

– Finds only one s-t path

• Data structure duplication solution
– Use distinct data structures to track s and t paths

– At each BFS level check if there are vertices visited by both

– Finds all s-t paths

• Performance metric
– Number of s-t Pairs Per Second (NSTPS)

– Execute ST-CON algorithm over a set of s-t pairs randomly selected

13

ST-CON Results
Weak Scaling Plot (RMAT Graph SCALE 21 – 27)

14

ST-CON Results
Weak Scaling Plot (RMAT Graph SCALE 19 – 26)

Only Parallel Atomic with different Edge Factor

15

ST-CON Results
Strong Scaling Plot (Parallel Atomic)

16

Bernaschi, M., Carbone, G., Mastrostefano, E., & Vella, F.
Solutions to the st-connectivity problem using a GPU-based distributed BFS.
Journal of Parallel and Distributed Computing, Volume 76, Pages 145-153 February 2015

Betweenness Centrality
Misure of the influence of a node in a given network used in network
analysis, transportation networks, clustering, etc.

• σst is the number of shortest paths from s to t

• σst(v) is the number of shortest paths from s to t passing through v

17

𝐵𝐶(𝑣) =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑣

• Best known sequential algorithm requires O(mn) time-complexity and
O(n+m) space-complexity (Brandes2001)

• No satisfactory performance for large-scale graphs (biology systems and
social networks)

Distributed BC

• Parallel distributed based on Brandes algorithm
– 2D BFS as building block

– Distributed dependency accumulation

18

𝛿𝑠(𝑣) =
𝜎𝑠𝑣
𝜎𝑠𝑤
(1 + 𝛿𝑠 𝑤)

𝑤 ∈ 𝑆𝑢𝑐𝑐(𝑣)

 𝐵𝐶(𝑣) = 𝛿𝑠(𝑣)

𝑠≠𝑣

Dependency is: BC scores become:

A R-MAT graph with 2M nodes and ≈ 32M Edges
requires about 20 hours on 4 K40 GPUs !!

Conclusions
• Best algorithm has still O(mn) complexity

• Reduce n
– 1-degree reduction (≈ 15% on R-MAT) Saríyüce2013, Baglioni2012

– 2-degree reduction (≈ 8% on R-MAT)

– Further heuristics to reduce the size of the graph to be analyzed

• Improve parallelism
– Multi-source BFS

19

Please complete the Presenter Evaluation sent to you by email or through
the GTC Mobile App. Your feedback is important!

20

Thank You!

giancarlo.carbone@uniroma1.it

