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Why Graph Algorithms 
• Analyze large networks 

– Evaluate structural properties of networks using common graph 
algorithms (BFS,  BC, ST-CON, ...) 

– Large graphs require parallel computing architectures 

• High performance graph algorithm: 
– Most of graph algorithms have low arithmetic intensity and irregular 

memory access patterns 

– How do GPU perform running such algorithms? 

– GPU main memory is currently limited to 12GB 

– For large datasets, cluster of GPUs are required 
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Large Graphs 

• Large scale networks include hundred million of nodes 

• Real-world large scale networks feature a power law degree 
distribution and/or small diameter 

# Vertices # Edges Diameter 

wiki-Talk 2.39E+06 5.02E+06                  9  

com-Orkut 3.07E+06 1.17E+08                  9  

com-LiveJournal 4.00E+06 3.47E+07                17  

soc-LiveJournal1 4.85E+06 6.90E+07                16  

com-Friendster 6.56E+07 1.81E+09                32  

Source: Stanford Large Network Dataset Collection 
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Distributed Breadth First Search 

• Developed according to the Graph 500 specifications 

– Generate edge list using RMAT generator 

– Support up to SCALE 40 and Edge Factor 16 (where |V| = 2SCALE and |M| 
= 16 x 2SCALE) 

– Use 64 bits for vertex representation 

• Performance metric: Traversed Edges Per Second (TEPS) 

• Implementation for GPU clusters 

• Hybrid Programming paradigm: CUDA + Message Passing  (MPI and APEnet) 

• Level Synchronous Parallel BFS 

• Data structure divided in subsets and distributed over computational nodes 
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1-D BFS 
• 1-D Graph Partitioning 

• Balanced thread workload 
– Map threads to data by using scan and search operations 

• Enqueue vertices only once (avoiding duplicates) 
– Local mask array to mark both local and connected vertices 

• Reduce message size 
– Communication pattern to exchange predecessor vertices only when BFS is 

completed avoiding sending them at each BFS level 

– Use 32 bits representation to exchange vertices instead of 64 bits 
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1-D Results 
Weak Scaling Plot (RMAT Graph SCALE 21 – 31) 
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2-D BFS 
• 2-D Graph partitioning 

– Improved scalability avoiding all-to-all communications 

 

• Atomic Operations 
– Local computation leverages efficient atomic operations on Kepler 

– 2.3x improvement from S2050 (Fermi) to K20X (Kepler) on single GPU 

 

• Further reduction of message size 
– Use a bitmap to exchange vertices among nodes 
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2-D Results 
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Weak Scaling Plot (RMAT Graph SCALE 21 – 33) 



2-D BFS Bitmap based transfer 
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Use bitmap to exchange vertices information 

 

 

 
With bitmap 

 

 

Without bitmap 

 

 



2D BFS Results on Real Graph* 

Data Set Name Vertices Edges Scale EF # GPUs GTEPS BFS Levels 
com-LiveJournal 4.00E+06 3.47E+07 22 9 2 0.77 14 
soc-LiveJournal1 4.85E+06 6.90E+07 22 14 2 1.25 13 
com-Orkut 3.07E+06 1.17E+08 22 38 4 2.67 8 
com-Friendster 6.56E+07 1.81E+09 25 27 64 15.68 24 
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ST-CON 

• Decision problem 
– Given source vertex s and destination vertex t determine if they are 

connected 

– Output the shortest path if one exists 

• Straightforward solution by using BFS 
– Start a BFS from s and terminate if t is reached 

• Parallel ST-CON 
– Start two BFS in parallel from s and t 

– Terminate if the two paths meet 
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Distributed ST-CON 

• Atomic-operations based solution 
– Use atomic operations to update visited vertices 

– Finds only one s-t path 

• Data structure duplication solution 
– Use distinct data structures to track s and t paths 

– At each BFS level check if there are vertices visited by both 

– Finds all s-t paths 

• Performance metric 
– Number of s-t Pairs Per Second (NSTPS) 

– Execute ST-CON algorithm over a set of s-t pairs randomly selected 
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ST-CON Results 
Weak Scaling Plot (RMAT Graph SCALE 21 – 27) 
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ST-CON Results 
Weak Scaling Plot (RMAT Graph SCALE 19  – 26) 

Only Parallel Atomic with different Edge Factor 
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ST-CON Results 
Strong Scaling Plot (Parallel Atomic) 
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Betweenness Centrality 
Misure of the influence of a node in a given network used in network 
analysis, transportation networks, clustering, etc. 

 

 
• σst is the number of shortest paths from s to t  

• σst(v) is the number of shortest paths from s to t passing through v 
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𝐵𝐶(𝑣) =  
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑣

 

• Best known sequential algorithm requires  O(mn) time-complexity and 
O(n+m) space-complexity (Brandes2001) 

• No satisfactory performance for large-scale graphs (biology systems and 
social networks)  

 



Distributed BC 

• Parallel distributed based on Brandes algorithm 
– 2D BFS as building block 

– Distributed dependency accumulation 
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𝛿𝑠(𝑣) =  
𝜎𝑠𝑣
𝜎𝑠𝑤
(1 + 𝛿𝑠 𝑤 )

𝑤 ∈ 𝑆𝑢𝑐𝑐(𝑣)

 𝐵𝐶(𝑣) = 𝛿𝑠(𝑣)

𝑠≠𝑣

 

Dependency is: BC scores become: 

A R-MAT graph with 2M nodes and  ≈ 32M Edges  
requires about  20 hours on 4 K40 GPUs !! 



Conclusions 
• Best algorithm has still O(mn) complexity 

 

• Reduce n  
– 1-degree reduction (≈ 15% on R-MAT) Saríyüce2013,  Baglioni2012 

– 2-degree reduction (≈ 8% on R-MAT) 

– Further heuristics to reduce the size of the graph to be analyzed 

 

• Improve parallelism 
– Multi-source BFS  
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Please complete the Presenter Evaluation sent to you by email or through 
the GTC Mobile App. Your feedback is important! 
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