
© Siemens AG 2015. All rights reserved

Siemens Corporate Technology | March, 2015

Thrust++: Portable, Abstract Library for Medical Imaging

Applications

Page 2 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Agenda

Parallel Computing – Challenges and Solutions

What is Thrust++?

Thrust++ pipeline pattern

Demo

Thrust++ Data structures and Algorithms

Future Work

Page 3 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Parallel Computing
Real-time performance and scalability to Siemens products

Healthcare Industry Energy I&C

• Accelerated algorithms

• Rich and interactive

advanced visualization

• Real-time analytics

Various

probes

Signal

Conversion

Advanced Coronary Analysis

Portable Diagnosis & Screening

SINUMERIK CNC

• Real-time embedded control

• High precision simulations

• Rich and interactive operator

interfaces

Fault Localization

of Turbine blades

• Detailed 3D simulations

• Interactive CFD

• Real-time algorithms for automation

and control

Virtual Design of

Steam Turbines

Security Solutions

• Real-time image and video

processing

• High performance solutions for

crowd simulations

Danger Management

(Evacuation)

Page 4 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Thrust++ is based on Thrust1

Thrust: Features

[1] Thrust: http://thrust.github.io/

 Thrust Users

Abstraction Portability
Boosts

Productivity

Open source C++ template
library for parallel platforms

Widely used parallel
abstraction library

http://thrust.github.io/

Page 5 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Agenda

Parallel Computing – Challenges and Solutions

What is Thrust++?

Thrust++ pipeline pattern

Demo

Thrust++ Data structures and Algorithms

Future Work

Page 6 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Extensions to Thrust

 Limited Data Structures

 Lack of Multi-Dimensional Data Structures

 Lack of Complex Data Structures

 Limited Algorithms

 Generic for 1Dimensional data

 No Patterns

Thrust: Limitations

++

Extended Collection

of Algorithms
FFT-1d, FIR, Convolution,…

Parallel Patterns
Pipeline pattern

Data-structures
Device Texture 1D/2D

Host Texture 1D/2D

Device Array 2D/3D

Host Array 2D/3D

Page 7 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Agenda

Parallel Computing – Challenges and Solutions

What is Thrust++?

Thrust++ pipeline pattern

Demo

Thrust++ Data structures and Algorithms

Future Work

Page 8 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Pipeline

Source: Parallel Programming with

Microsoft .NET

Example of an Image Processing Pipeline

• Example illustrates how a pipeline can be used to speed up computation. Pipelines occur in various

domains

Page 9 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Thrust++ Pipeline pattern

2T. Schuele, “Efficient parallel execution of streaming applications on multi-core processors,” in Proceedings of the 19th International Euromicro Conference on

Parallel, Distributed and Network-based Processing, PDP2011, Ayia Napa, Cyprus, 9-11 February 2011, 2011

 Thrust++ pipeline pattern can be used to develop portable parallel stream based

applications. It is an extension to FluenC2

 Key features

• Abstraction from underlying hardware

• Linear pipelines with multiple sources/sinks

• Serial (in-order) and parallel (out-of-order) stages

• Generic programming in STL style

• Supports different back ends such as CUDA, TBB, OpenMP, and CPP

 Current version, pipeline pattern uses the following external schedulers

• Sequential scheduler

• Parallel scheduler (TBB)

Page 10 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Steps to set up the Thrust++ Pipeline

 Include Header file
 #include <thrust/patterns/pipeline/pipeline.hpp>

 Construct a network
 A network consists of a set of stages that are connected by communication

channels.

 Create Stages
 Inheriting from parent classes

 Source: This type of stage has only output port.

 Serial: This type of stage has input and output port. Only one instance of

this stage can run at a time

 Parallel: This type of stage has input and output port. Multiple instances of

this type of stage can run in parallel. In general, processes that neither have

any side effects nor maintain a state can safely be executed in parallel.

 Sink: This type of stage has only input ports

 Connect the stages
 E.g. stage1.connect<0>(stage2.port<0>())

 Start the network
 E.g. nw(10)

Source

Sink

Serial

Parallel_A
Parallel_B

Page 11 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Pipeline: CUDA

Requirements:

• CUDA operations must be in different, non-0, streams

• cudaMemcpyAsync with host from 'pinned' memory

• Sufficient resources must be available

• A blocked operation blocks all other operations in the queue, even in other streams

Stream Scheduling

• A CUDA operation is dispatched from the engine queue if:

• Preceding calls in the same stream have completed,

• Preceding calls in the same queue have been dispatched, and

• Resources are available

Thrust++ Extensions

• Asynchronous Copies

• Pinned Allocation

• Streams support

Page 12 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Streams scheduling

S1-I1

S2-I1

S3-I1

Compute queue

Is
s
u

e
 O

rd
e

r

S1-I1

S2-I1

execution

T
im

e

Sequential Scheduler: Results into depth first

Image1 Image2 Image3

Stage 1

Stage 2

Stage3

S1-I2

S2-I2

S3-I2

S3-I1 S1-I2

S2-I2

S3-I2 S1-I3

S2-I3

S3-I3

stream1

stream2

stream3

Page 13 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Streams scheduling

S1-I1

S2-I1

Compute queue

Is
s
u

e
 O

rd
e

r

S1-I1

S2-I1

execution

T
im

e

TBB Scheduler: In ideal situation will result into breadth first

Image1 Image2 Image3

Stage 1

Stage 2

Stage3

S1-I2

S2-I2

S3-I1

S1-I2

S2-I2

S3-I2
S1-I3

S2-I3

S3-I3

stream1

stream2

stream3

S1-I3

S2-I3

Page 14 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Create event matrix of dimension

[Max_Streams][Max_Stages]

Guarantees in-order

execution

R

(Post-stage)

cudaEventRecord

W

(Pre-Stage)

cudaStreamWaitEvent

Note: Parallel Stage has no wait event as it does not demand

in-order execution

Event Matrix

Image-0 Image-1 Image-2

Pre Stage W([0][0]) W([1][0])

Stage 0: Source

Post Stage R([0][0]) R([1][0]) R([2][0])

Pre Stage W([0][1]) W([1][1])

Stage 1: Serial

Post Stage R([0][1]) R([1][1]) R([2][1])

Pre Stage

Stage 2: Parallel

Post Stage R([0][2]) R([1][2]) R([2][2])

Pre Stage W([0][3]) W([1][3])

Stage 3: Sink

Post Stage R([0][3]) R([1][3]) R([2][3])

//Pre- Stage

if(image_id !=0 && (stage_kind != PARALLEL))

 cudaStreamWaitEvent(stream_id,kernelEvent[image_id-1][stageid],0);

//Post Stage

 cudaEventRecord(kernelEvent[image_id][stageid], stream_id);

Page 15 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Agenda

Parallel Computing – Challenges and Solutions

What is Thrust++?

Thrust++ pipeline pattern

Demo

Thrust++ Data structures and Algorithms

Future Work

Page 16 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Demo Application to illustrate Pipeline pattern

• Cone beam computed tomography (X-ray

beam is a cone beam.)

• The CBCT scanner rotates around the patient

at different projection angles

• Typically at a resolution of 1 or 0.5 degrees.

• A full scan of 360 degrees resulting in a total

of 720 projections with resolution of 0.5

degrees.

• A reconstruction algorithm is used to

reconstruct the 3D image of interest from the

projections.

• A popular algorithm for cone beam computed

tomography reconstruction is the Feldkamp

algorithm.

Pre-

Processing

Post-

Processing

Input Images Convolution

Back-

Projection

CT Reconstruction

512*1024*720

Source

Sink

Parallel

Serial

Page 17 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Summary and Findings: CT Reconstruction

•Patterns

• Texture usage should be avoided inside pipeline (CUDA7.0 RC removes this limitation)

• Device to device copy is launched by default in zero stream. This breaks the pipeline

• Parallel scheduler provides better overlap between stages

• Complete C++11 support not available till CUDA 5.5 for linux

Data CUDA Memory Type Reason

Input Texture Memory Takes advantage of hardware linear interpolation

Pre-computed

values

Shared

Memory/Constant

memory

Few pre-computed values repeatedly accessed by

multiple threads.

Output Global memory N*N*N float values

Page 18 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

0

5

10

15

20

25

Native CUDA (Shared
memory, Textures)

Thrust PARADIGM (Constant
memory, Textures)

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

Summary and Findings: CT Reconstruction

• Hardware backend

• Nvidia K20c using CUDA 5.5

• What could be the other

reasons for the performance

degradation with

PARADIGM?

• Thread configuration

Kernel

Thread configuration

CUDA Native

implementation

PARADIGM

implementation

Back-projection
Block: [128 * 4]

Grid: [4 * 128]

Block: [768*1]

Grid: [26*1]

Performance comparison of different implementations of back projection kernel

43.4%
25%

Page 19 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Summary and Findings: CT Reconstruction

Performance comparison of different implementations of back projection kernels. The

PARADIGM implementation with launch configuration (512,512) has minimal

performance degradation with that of the Native CUDA implementation

Native CUDA
(Shared
memory,
Textures)

Thrust

PARADIGM
(Constant
memory,
Textures)

PARADIGM
(512,512)

Series1 12.18 21.54 16.18 12.17

0

5

10

15

20

25

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

Page 20 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Agenda

Parallel Computing – Challenges and Solutions

What is Thrust++?

Thrust++ pipeline pattern

Demo

Thrust++ Data structures and Algorithms

Future Work

Page 21 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Thrust++

Data Structures

 Two Dimensional

 device/host_array2d

 2 Dimensional Data structure for

host/device

 device/host_image2d

 Read Only data structure for 2D spatial

locality

 Supports interpolation

 Supported only on Kepler +, CUDA 5.0

onwards (Bindless texture)

 Three Dimensional

 device/host_array3d

 3 Dimensional Data structure for

host/device

Texture Data Structure

cudaCreateTextureObject () cudaMemcpyToArray()

tex1Dfetch()

Page 22 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Agenda

Parallel Computing – Challenges and Solutions

What is Thrust++?

Thrust++ pipeline pattern

Demo

Thrust++ Data structure and Algorithms

Future Work

Page 23 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Future Work

•Non linear pipeline support for CUDA

•OpenCL backend

• Support embedded space: Mali GPU

• VexCL: https://github.com/ddemidov/vexcl

• Boost.Compute: http://kylelutz.github.io/compute/

•Shared memory/Local Memory

• Bulk library approach (http://on-demand.gputechconf.com/gtc/2014/presentations/S4673-thrust-

parallel-algorithms-bulk.pdf)

•Other calculators

• Occupancy is not always the best measure to get optimal performance

• Two phase decomposition/Launchbox (http://nvlabs.github.io/moderngpu/intro.html)

Parallel software Abstractions for Rapid Adaptation, Deployment and InteGration over Multicore/Manycore architectures

++

https://github.com/ddemidov/vexcl
http://kylelutz.github.io/compute/
http://nvlabs.github.io/moderngpu/intro.html

Page 24 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Contact

Thank you. For further information you can contact Parallel Systems India Lab:

Giri Prabhakar

Head of Research Group

Parallel Systems India Lab

E-mail:

giri.prab@siemens.com

Bharatkumar Sharma

Lead Research Engineer

Parallel Systems India Lab

E-mail:

bharatkumar.sharma@siemens.com

mailto:giri.prab@siemens.com
mailto:bharatkumar.sharma@siemens.com

© Siemens AG 2015. All rights reserved

Backup

Page 26 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

BackProjection

•Backprojection is the most compute intensive step in 3D image reconstruction amounting for 97% of

execution time

•For N*N*N volume, N*N threads are launched.

•A loop runs depth wise which captures contribution of each input convoluted image to the

output volume as shown in Figure

•The loop is unrolled to increase ILP to get better performance.

Data CUDA Memory

Type

Reason

Input Texture Memory Takes advantage of hardware

linear interpolation

Pre-

computed

values

Shared

Memory/Constant

memory

Few pre-computed values

repeatedly accessed by multiple

threads.

Output Global memory N*N*N float values

Page 27 March 2015 Corporate Technology © Siemens AG 2015. All rights reserved

Software Stack

Parallel

Algorithms

Application

Many-core

Software

Abstraction Layer1

Operating System & Device Drivers

Hardware (multi-core CPU + many-core device (GPU, MIC, …))

CUDA OpenMP TBB …

Parallel

Patterns

Data

Structures

and Iterators

Power Monitor2

Device Back-end Extensions

[1] Thrust, an open-source C++ library based on C++ STL will be extended to provide the Many-core Software Abstraction Layer

[2] Tools and utilities to monitor and optimize power (energy) usage

