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Supercomputers! 

• Supercomputer Hardware Advances Everyday  
– More and more parallelism  

• High-Level Parallelism  
– “The Free Lunch Is Over” (Herb Sutter) 



VTK-m Project 

• Combines the strengths of multiple projects: 

– EAVL, Oak Ridge National Laboratory 

– DAX, Sandia National Laboratory 

– PISTON, Los Alamos National Laboratory 

 



VTK-m Goals 

• A single place for the visualization community to collaborate, 
contribute, and leverage massively threaded algorithms. 

• Reduce the challenges of writing highly concurrent algorithms 
by using data parallel algorithms 

 

 

 

 

 

 



VTK-m Goals 

• Make it easier for simulation codes to take advantage these 
parallel visualization and analysis tasks on a wide range of 
current and next-generation hardware. 
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Extreme-scale Analysis and 
Visualization Library  (EAVL) 

J.S. Meredith, S. Ahern, D. Pugmire, R. Sisneros, "EAVL: The Extreme-scale Analysis and Visualization 
Library", Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), 2012.  

• More accurately represent simulation 
data in analysis results 

• Support novel simulation applications 

New Mesh Layouts 
• Support future low-memory systems 

• Minimize data movement and 
transformation costs 

Greater Memory Efficiency 

• Accelerator-based system support 

• Pervasive parallelism for multi-core 
and many-core processors 

Parallel Algorithm Framework 
• Direct zero-copy mapping of data  from 

simulation to analysis codes 

• Heterogeneous processing models  

In Situ Support 

EAVL enables advanced visualization and analysis for the next generation of scientific simulations, 
supercomputing systems, and end-user analysis tools. 

http://ft.ornl.gov/eavl  

http://ft.ornl.gov/eavl


Gaps in Current Data Models 

• Traditional data set models target only common combinations of 
cell and point arrangements 

• This limits their expressiveness and flexibility 
Point Arrangement 
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Arbitrary Compositions for Flexibility 
• EAVL allows clients to construct data sets from cell and point arrangements that 

exactly match their original data 
– In effect, this allows for hybrid and novel mesh types 

• Native data results in greater accuracy and efficiency  

Point Arrangement 
Cells Coordinates Explicit  Logical  Implicit  Hybrid 

Structured  

Strided      

Separated      

Hybrid     

Unstructured  

Strided      
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Other Data Model Gaps Addressed in EAVL 

Low/high dimensional data 
(9D mesh in GenASiS) 
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Multiple simultaneous 

coordinate systems 
(lat/lon + Cartesian xyz) 

Multiple cell groups in one mesh 
(E.g. subsets, face sets, flux surfaces) 

Non-physical data (graph, 
sensor, performance data) 

Mixed topology meshes 
(atoms + bonds, sidesets) 

Novel and hybrid mesh types 
(quadtree grid from MADNESS) 
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Memory Efficiency in EAVL 
• Data model designed for memory efficient 

representations 
– Lower memory usage for same mesh relative to 

traditional data models 
– Less data movement for common transformations leads 

to faster operation 

• Example: threshold data selection  
– 7x memory usage reduction 
– 5x performance improvement 
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Tightly Coupled In Situ with EAVL 
• Efficient in situ visualization and analysis 

– light weight, zero-dependency library 
– zero-copy references to host simulation 
– heterogeneous memory support for accelerators 
– flexible data model supports non-physical data types 

• Example: scientific and performance visualization, tightly coupled EAVL with SciDAC Xolotl 
plasma/surface simulation 

 
 

Species concentrations across grid Cluster concentrations at 2.5mm Solver time at each time step Solver time for each MPI task 

In Situ Scientific Visualization with Xolotl and EAVL In Situ Performance Visualization with Xolotl and EAVL 



Loosely coupled In Situ with EAVL 
• Application de-coupled from visualization using 

ADIOS and Data Spaces 

– EAVL plug-in reads data from staging nodes 

– System nodes running EAVL perform 
visualization operations and rendering 

• Example: field and particle data, EAVL in situ with 
XGC SciDAC simulation via ADIOS and Data Spaces 

Viz 

Visualization of XGC field 
data from running simulation 

Visualization of XGC particles from running simulation. All 
particles (left), and selected subset of particles (right). Supercomputer node layout for loosely coupled EAVL in situ 

Vis/Analysis 
(EAVL) 

ADIOS 

HPC Application  

ADIOS 

Staging  
(Data Spaces) 
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Data Parallelism in EAVL 
 

• Algorithm development framework in EAVL 
combines productivity with pervasive parallelism 
– Data parallel primitives map functors onto 

mesh-aware iteration patterns 
• Example: surface normal operation 

– strong performance scaling on multi-core and 
many-core devices 
(CPU, GPU, MIC/KNF) 
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Runtimes for Surface Normal Operation

Publications: 
• D. Pugmire, J. Kress, J.S. Meredith, N. Podhorszki, J. Choi, S. Klasky, “Towards Scalable Visualization Plugins for Data 

Staging Workflows”, 5th International Workshop on Big Data Analytics: Challenges and Opportunities (BDAC), 2014. 
• C. Sewell, J.S. Meredith, K. Moreland, T. Peterka, D. DeMarle, L.-T. Lo, J. Ahrens, R. Maynard, B. Geveci, "The SDAV 

Software Frameworks for Visualization and Analysis on Next-Generation Multi-Core and Many-Core Architectures", 
Seventh Workshop on Ultrascale Visualization (UltraVis), 2012. 

• J.S. Meredith, R. Sisneros, D. Pugmire, S. Ahern, "A Distributed Data-Parallel Framework for Analysis and Visualization 
Algorithm Development", Workshop on General Purpose Processing on Graphics Processing Units (GPGPU5), 2012. 

• J.S. Meredith, S. Ahern, D. Pugmire, R. Sisneros, "EAVL: The Extreme-scale Analysis and Visualization Library", 
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), 2012. 
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Advanced Rendering in EAVL 

Ebola glycoprotein with 
proteins from survivor 

Shear-wave perturbations in 
SPECFEM3D_GLOBAL code 

Direct volume rendering from 
Shepard global interpolant 

• Advanced rendering capabilities 

– raster/vector, ray tracing, volume rendering 

– all GPU accelerated using EAVL’s data parallel API 

– parallel rendering support via MPI and IceT 

• Examples: ambient occlusion lighting effects highlight subtle shape cues for scientific understanding 

• Example: direct volume rendering achieves high accuracy images with GPU-accelerated performance 



Dax: Data Analysis Toolkit for 
Extreme Scale 

  

 Kenneth Moreland Sandia National Laboratories 

 Robert Maynard Kitware, Inc. 



Dax Success 

• ParaView/VTK 

– Zero-copy support for 
vtkDataArray 

– Exposed as a plugin inside 
ParaView 
• Will fall back to cpu version 

19 



Dax Success 
• TomViz: an open, general S/TEM 

visualization tool 

– Built on top of ParaView framework 

– Operates on large (10243 and greater) 
volumes 

– Uses Dax for algorithm construction 

• Implements streaming, interactive, 
incremental contouring 

– Streams indexed sub-grids to 
threaded contouring algorithms 20 



struct Sine: public dax::exec::WorkletMapField { 
  typedef void ControlSignature(FieldIn, FieldOut); 
  typedef _2 ExecutionSignature(_1); 
 
  DAX_EXEC_EXPORT 
  dax::Scalar operator()(dax::Scalar v) const { 
    return dax::math::Sin(v); 
  } 
}; 

dax::cont::ArrayHandle<dax::Scalar> inputHandle = 
    dax::cont::make_ArrayHandle(input); 
dax::cont::ArrayHandle<dax::Scalar> sineResult; 
 
dax::cont::DispatcherMapField<Sine> dispatcher;  
dispatcher.Invoke(inputHandle, sineResult); 

Control Environment 

Execution Environment 
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Results: Visual comparison of halos 

Original Algorithm PISTON Algorithm 



• Focuses on developing data-parallel algorithms that are portable 
across multi-core and many-core architectures for use by LCF codes 
of interest 

• Algorithms are integrated into LCF codes in-situ either directly or 
though integration with ParaView Catalyst 

PISTON isosurface with curvilinear 
coordinates 

Ocean temperature isosurface generated 
across four GPUs using distributed PISTON 

PISTON integration with VTK and 
ParaView 

Piston 

globe.mp4
paraview.mp4


Integration with VTK and ParaView 
• Filters that use PISTON data types and algorithms integrated into VTK and ParaView 

• Utility filters interconvert between standard VTK data format and PISTON data format (thrust 
device vectors) 

• Supports interop for on-card rendering 

paraview.mp4


• Particles are distributed among processors according to a 
decomposition of the physical space 

• Overload zones (where particles are assigned to two processors) are 
defined such that every halo will be fully contained within at least one 
processor 

• Each processor finds halos within its domain: Drop in PISTON multi-
/many-core accelerated algorithms 

• At the end, the parallel halo finder performs a merge step to handle 
“mixed” halos (shared between two processors), such that a unique 
set of halos is reported globally 

Distributed Parallel Halo Finder 



• This test problem has ~90 million particles per process. 
• Due to memory constraints on the GPUs, we utilize a hybrid approach, in which the halos are computed on the CPU but the centers on 
the GPU.  
• The PISTON MBP center finding algorithm requires much less memory than the halo finding algorithm but provides the large majority of 
the speed-up, since MBP center finding takes much longer than FOF halo finding with the original CPU code. 

Performance Improvements 

 On Moonlight with 10243 particles on 128 nodes with 16 processes per node, 

PISTON on GPUs was 4.9x faster for halo + most bound particle center finding 

 On Titan with 10243 particles on 32 nodes with 1 process per node, PISTON on 

GPUs was 11x faster for halo + most bound particle center finding 

 Implemented grid-based most bound particle center finder using a Poisson solver 
that performs fewer total computations than standard O(n2) algorithm 

Science Impact 

 These performance improvements allowed halo analysis to be performed on a 
very large 81923 particle data set across 16,384 nodes on Titan for which analysis 
using the existing CPU algorithms was not feasible 

Publications 

 Submitted to PPoPP15: “Utilizing Many-Core Accelerators for Halo and Center 
Finding within a Cosmology Simulation” Christopher Sewell, Li-ta Lo, Katrin 
Heitmann, Salman Habib, and James Ahrens 

Distributed Parallel Halo Finder 



PISTON In-Situ 
• VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code 

– Implemented first version of an in-situ adapter based on Paraview 
CoProcessing Library (Catalyst) 

– Three pipelines: vtkDataSetMapper, vtkContourFilter, 
vtkPistonContour 

• CoGL 

– Stand-alone meso-scale simulation code developed as part of the 
Exascale Co-Design Center for Materials in Extreme Environments 

– Studies pattern formation in ferroelastic materials using the 
Ginzburg–Landau approach 

– Models cubic-to-tetragonal transitions under dynamic strain loading 

– Simulation code and in-situ viz implemented using PISTON  

Output of vtkDataSetMapper and vtkPistonContour 
filters on Hhydro charge density at one timestep of VPIC 
simulation 

Strains in x,y,z (above); PISTON in-situ 
visualization (right) 



VTK-m Combines Dax, PISTON, EAVL 



Connectivity 

3D Point Coordinates 

Cell Fields 

Point Fields 

Dimensions 

3D Point Coordinates 

Cell Fields 

Point Fields 

Dimensions 

3D Axis Coordinates 

Cell Fields 

Point Fields 

 

A Traditional Data Set Model  

Data Set 

Rectilinear Structured Unstructured 



Tree Connectivity Dimensions 
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The VTK-m Data Set Model 

Data Set 

CellSet 

Explicit Structured 

Coords Field 

QuadTree 
CellList 

Subset 
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vtkm::cont vtkm::exec 



Execution 
Environment 

 

Control 
Environment 

 
Grid Topology 
Array Handle 
Invoke 

VTK-m Framework 

vtkm::cont vtkm::exec 



Execution 
Environment 

 
Cell Operations 

Field Operations 
Basic Math 
Make Cells 

Control 
Environment 

 
Grid Topology 
Array Handle 
Invoke 

W
o

rklet 
VTK-m Framework 

vtkm::cont vtkm::exec 



Execution 
Environment 

 
Cell Operations 

Field Operations 
Basic Math 
Make Cells 

Control 
Environment 

 
Grid Topology 
Array Handle 
Invoke 

W
o

rklet 
VTK-m Framework 

vtkm::cont vtkm::exec 



Execution 
Environment 
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Device Adapter Contents 
• Tag (struct DeviceAdapterFoo {  };) 
• Execution Array Manager 

 
 
 
 

• Schedule 
 
 

• Scan 
• Sort 
• Other Support algorithms 

– Stream compact, copy, parallel find, unique 

Control Environment Execution Environment 

8 3 5 5 3 6 0 7 4 0 8 11 16 21 24 30 30 37 41 41 

8 3 5 5 3 6 0 7 4 0 0 0 3 3 4 5 5 6 7 8 

Transfer 

functor 
worklet worklet worklet worklet worklet worklet worklet functor 

Schedule 

Compute 

Compute 



VTK-m Arbitrary Composition 

• VTK-m allows clients to access different memory layouts through the 
Array Handle and Dynamic Array Handle. 

–Allows for efficient in-situ integration 

–Allows for reduced data transfer 

Control Environment Execution Environment 
Transfer 

Control Environment Execution Environment 
Transfer 



functor() 

Functor Mapping 
Applied to Topologies 

[Baker, et al. 2010] 



functor() 

Functor Mapping 
Applied to Topologies 

[Baker, et al. 2010] 



2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz + NVIDIA Tesla K40c 
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2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz + NVIDIA Tesla K40c 
 
Data: 432^3 
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What We Have So Far 

• Features 

– Core Types 

– Statically Typed Arrays 

– Dynamically Typed Arrays 

– Device Interface (Serial, CUDA, and TBB) 

– Basic Worklet and Dispatcher 



What We Have So Far 

• Compiles with 
– gcc (4.8+), clang, msvc (2010+), icc, and pgi 

 
• User Guide work in progress 

• Ready for larger collaboration 

 



Questions? 

 

 

 

m.vtk.org 


