
Roadmap for Many-core
Visualization Software in DOE

Jeremy Meredith

Oak Ridge National Laboratory

Supercomputers!

• Supercomputer Hardware Advances Everyday
– More and more parallelism

• High-Level Parallelism
– “The Free Lunch Is Over” (Herb Sutter)

VTK-m Project

• Combines the strengths of multiple projects:

– EAVL, Oak Ridge National Laboratory

– DAX, Sandia National Laboratory

– PISTON, Los Alamos National Laboratory

VTK-m Goals

• A single place for the visualization community to collaborate,
contribute, and leverage massively threaded algorithms.

• Reduce the challenges of writing highly concurrent algorithms
by using data parallel algorithms

VTK-m Goals

• Make it easier for simulation codes to take advantage these
parallel visualization and analysis tasks on a wide range of
current and next-generation hardware.

In-Situ

Execution Data Parallel Algorithms Arrays

Post Processing

VTK-m Architecture

Worklets

Data Model

Filters

In-Situ

Execution Data Parallel Algorithms Arrays

Post Processing

VTK-m Architecture

Worklets

Data Model

Filters

Extreme-scale Analysis and
Visualization Library (EAVL)

J.S. Meredith, S. Ahern, D. Pugmire, R. Sisneros, "EAVL: The Extreme-scale Analysis and Visualization
Library", Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), 2012.

• More accurately represent simulation
data in analysis results

• Support novel simulation applications

New Mesh Layouts
• Support future low-memory systems

• Minimize data movement and
transformation costs

Greater Memory Efficiency

• Accelerator-based system support

• Pervasive parallelism for multi-core
and many-core processors

Parallel Algorithm Framework
• Direct zero-copy mapping of data from

simulation to analysis codes

• Heterogeneous processing models

In Situ Support

EAVL enables advanced visualization and analysis for the next generation of scientific simulations,
supercomputing systems, and end-user analysis tools.

http://ft.ornl.gov/eavl

http://ft.ornl.gov/eavl

Gaps in Current Data Models

• Traditional data set models target only common combinations of
cell and point arrangements

• This limits their expressiveness and flexibility
Point Arrangement

Cells Coordinates Explicit Logical Implicit Hybrid

Structured

Strided Structured Grid ?
Image
Data

?
Separated ? Rectilinear Grid ?

Hybrid ? ? ?

Unstructured

Strided Unstructured Grid ?

?

?
Separated ? ? ?

Hybrid ? ? ?

Arbitrary Compositions for Flexibility
• EAVL allows clients to construct data sets from cell and point arrangements that

exactly match their original data
– In effect, this allows for hybrid and novel mesh types

• Native data results in greater accuracy and efficiency

Point Arrangement
Cells Coordinates Explicit Logical Implicit Hybrid

Structured

Strided    

Separated    

Hybrid    

Unstructured

Strided    

Separated    

Hybrid    

EAVL
Data Set

Other Data Model Gaps Addressed in EAVL

Low/high dimensional data
(9D mesh in GenASiS)

H

C

H

C

H

H

A B
Multiple simultaneous

coordinate systems
(lat/lon + Cartesian xyz)

Multiple cell groups in one mesh
(E.g. subsets, face sets, flux surfaces)

Non-physical data (graph,
sensor, performance data)

Mixed topology meshes
(atoms + bonds, sidesets)

Novel and hybrid mesh types
(quadtree grid from MADNESS)

1

2

4

8

16

32

64

128

Original
Data

Threshold
(a)

Threshold
(b)

Threshold
(c)

By
te

s
pe

r
Cr

id
 C

el
l

Memory Usage VTK EAVL

Memory Efficiency in EAVL
• Data model designed for memory efficient

representations
– Lower memory usage for same mesh relative to

traditional data models
– Less data movement for common transformations leads

to faster operation

• Example: threshold data selection
– 7x memory usage reduction
– 5x performance improvement

1

2

4

8

16

Ru
nt

im
e

(m
se

c)

Cells Remaining

Total Runtime VTK EAVL

35 < Density < 45

Tightly Coupled In Situ with EAVL
• Efficient in situ visualization and analysis

– light weight, zero-dependency library
– zero-copy references to host simulation
– heterogeneous memory support for accelerators
– flexible data model supports non-physical data types

• Example: scientific and performance visualization, tightly coupled EAVL with SciDAC Xolotl
plasma/surface simulation

Species concentrations across grid Cluster concentrations at 2.5mm Solver time at each time step Solver time for each MPI task

In Situ Scientific Visualization with Xolotl and EAVL In Situ Performance Visualization with Xolotl and EAVL

Loosely coupled In Situ with EAVL
• Application de-coupled from visualization using

ADIOS and Data Spaces

– EAVL plug-in reads data from staging nodes

– System nodes running EAVL perform
visualization operations and rendering

• Example: field and particle data, EAVL in situ with
XGC SciDAC simulation via ADIOS and Data Spaces

Viz

Visualization of XGC field
data from running simulation

Visualization of XGC particles from running simulation. All
particles (left), and selected subset of particles (right). Supercomputer node layout for loosely coupled EAVL in situ

Vis/Analysis
(EAVL)

ADIOS

HPC Application

ADIOS

Staging
(Data Spaces)

In-Situ

Execution Data Parallel Algorithms Arrays

Post Processing

VTK-m Architecture

Worklets

Data Model

Filters

Data Parallelism in EAVL

• Algorithm development framework in EAVL
combines productivity with pervasive parallelism
– Data parallel primitives map functors onto

mesh-aware iteration patterns
• Example: surface normal operation

– strong performance scaling on multi-core and
many-core devices
(CPU, GPU, MIC/KNF)

0 µs

20 µs

40 µs

60 µs

80 µs

100 µs

120 µs

140 µs

160 µs

Intel
Xeon
E5520

AMD
Opteron

8356

OpenMP
4xAMD

8356

NVIDIA
GeForce
8800GTX

NVIDIA
Tesla

C1060

NVIDIA
Tesla

C2050

Runtimes for Surface Normal Operation

Publications:
• D. Pugmire, J. Kress, J.S. Meredith, N. Podhorszki, J. Choi, S. Klasky, “Towards Scalable Visualization Plugins for Data

Staging Workflows”, 5th International Workshop on Big Data Analytics: Challenges and Opportunities (BDAC), 2014.
• C. Sewell, J.S. Meredith, K. Moreland, T. Peterka, D. DeMarle, L.-T. Lo, J. Ahrens, R. Maynard, B. Geveci, "The SDAV

Software Frameworks for Visualization and Analysis on Next-Generation Multi-Core and Many-Core Architectures",
Seventh Workshop on Ultrascale Visualization (UltraVis), 2012.

• J.S. Meredith, R. Sisneros, D. Pugmire, S. Ahern, "A Distributed Data-Parallel Framework for Analysis and Visualization
Algorithm Development", Workshop on General Purpose Processing on Graphics Processing Units (GPGPU5), 2012.

• J.S. Meredith, S. Ahern, D. Pugmire, R. Sisneros, "EAVL: The Extreme-scale Analysis and Visualization Library",
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), 2012.

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

2 4 8 16 32 64 128

Number of Threads

Performance Scaling on Xeon Phi

Parallel Efficiency Relative Runtime

Advanced Rendering in EAVL

Ebola glycoprotein with
proteins from survivor

Shear-wave perturbations in
SPECFEM3D_GLOBAL code

Direct volume rendering from
Shepard global interpolant

• Advanced rendering capabilities

– raster/vector, ray tracing, volume rendering

– all GPU accelerated using EAVL’s data parallel API

– parallel rendering support via MPI and IceT

• Examples: ambient occlusion lighting effects highlight subtle shape cues for scientific understanding

• Example: direct volume rendering achieves high accuracy images with GPU-accelerated performance

Dax: Data Analysis Toolkit for
Extreme Scale

 Kenneth Moreland Sandia National Laboratories

 Robert Maynard Kitware, Inc.

Dax Success

• ParaView/VTK

– Zero-copy support for
vtkDataArray

– Exposed as a plugin inside
ParaView
• Will fall back to cpu version

19

Dax Success
• TomViz: an open, general S/TEM

visualization tool

– Built on top of ParaView framework

– Operates on large (10243 and greater)
volumes

– Uses Dax for algorithm construction

• Implements streaming, interactive,
incremental contouring

– Streams indexed sub-grids to
threaded contouring algorithms 20

struct Sine: public dax::exec::WorkletMapField {
 typedef void ControlSignature(FieldIn, FieldOut);
 typedef _2 ExecutionSignature(_1);

 DAX_EXEC_EXPORT
 dax::Scalar operator()(dax::Scalar v) const {
 return dax::math::Sin(v);
 }
};

dax::cont::ArrayHandle<dax::Scalar> inputHandle =
 dax::cont::make_ArrayHandle(input);
dax::cont::ArrayHandle<dax::Scalar> sineResult;

dax::cont::DispatcherMapField<Sine> dispatcher;
dispatcher.Invoke(inputHandle, sineResult);

Control Environment

Execution Environment

In-Situ

Execution Data Parallel Algorithms Arrays

Post Processing

VTK-m Architecture

Worklets

Data Model

Filters

Results: Visual comparison of halos

Original Algorithm PISTON Algorithm

• Focuses on developing data-parallel algorithms that are portable
across multi-core and many-core architectures for use by LCF codes
of interest

• Algorithms are integrated into LCF codes in-situ either directly or
though integration with ParaView Catalyst

PISTON isosurface with curvilinear
coordinates

Ocean temperature isosurface generated
across four GPUs using distributed PISTON

PISTON integration with VTK and
ParaView

Piston

globe.mp4
paraview.mp4

Integration with VTK and ParaView
• Filters that use PISTON data types and algorithms integrated into VTK and ParaView

• Utility filters interconvert between standard VTK data format and PISTON data format (thrust
device vectors)

• Supports interop for on-card rendering

paraview.mp4

• Particles are distributed among processors according to a
decomposition of the physical space

• Overload zones (where particles are assigned to two processors) are
defined such that every halo will be fully contained within at least one
processor

• Each processor finds halos within its domain: Drop in PISTON multi-
/many-core accelerated algorithms

• At the end, the parallel halo finder performs a merge step to handle
“mixed” halos (shared between two processors), such that a unique
set of halos is reported globally

Distributed Parallel Halo Finder

• This test problem has ~90 million particles per process.
• Due to memory constraints on the GPUs, we utilize a hybrid approach, in which the halos are computed on the CPU but the centers on
the GPU.
• The PISTON MBP center finding algorithm requires much less memory than the halo finding algorithm but provides the large majority of
the speed-up, since MBP center finding takes much longer than FOF halo finding with the original CPU code.

Performance Improvements

 On Moonlight with 10243 particles on 128 nodes with 16 processes per node,

PISTON on GPUs was 4.9x faster for halo + most bound particle center finding

 On Titan with 10243 particles on 32 nodes with 1 process per node, PISTON on

GPUs was 11x faster for halo + most bound particle center finding

 Implemented grid-based most bound particle center finder using a Poisson solver
that performs fewer total computations than standard O(n2) algorithm

Science Impact

 These performance improvements allowed halo analysis to be performed on a
very large 81923 particle data set across 16,384 nodes on Titan for which analysis
using the existing CPU algorithms was not feasible

Publications

 Submitted to PPoPP15: “Utilizing Many-Core Accelerators for Halo and Center
Finding within a Cosmology Simulation” Christopher Sewell, Li-ta Lo, Katrin
Heitmann, Salman Habib, and James Ahrens

Distributed Parallel Halo Finder

PISTON In-Situ
• VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code

– Implemented first version of an in-situ adapter based on Paraview
CoProcessing Library (Catalyst)

– Three pipelines: vtkDataSetMapper, vtkContourFilter,
vtkPistonContour

• CoGL

– Stand-alone meso-scale simulation code developed as part of the
Exascale Co-Design Center for Materials in Extreme Environments

– Studies pattern formation in ferroelastic materials using the
Ginzburg–Landau approach

– Models cubic-to-tetragonal transitions under dynamic strain loading

– Simulation code and in-situ viz implemented using PISTON

Output of vtkDataSetMapper and vtkPistonContour
filters on Hhydro charge density at one timestep of VPIC
simulation

Strains in x,y,z (above); PISTON in-situ
visualization (right)

VTK-m Combines Dax, PISTON, EAVL

Connectivity

3D Point Coordinates

Cell Fields

Point Fields

Dimensions

3D Point Coordinates

Cell Fields

Point Fields

Dimensions

3D Axis Coordinates

Cell Fields

Point Fields

A Traditional Data Set Model

Data Set

Rectilinear Structured Unstructured

Tree Connectivity Dimensions

FieldName

Component
Name

Association

Values

Cells[]

Points[]

Fields[]

The VTK-m Data Set Model

Data Set

CellSet

Explicit Structured

Coords Field

QuadTree
CellList

Subset

Execution
Environment

Control
Environment

VTK-m Framework

vtkm::cont vtkm::exec

Execution
Environment

Control
Environment

Grid Topology
Array Handle
Invoke

VTK-m Framework

vtkm::cont vtkm::exec

Execution
Environment

Cell Operations

Field Operations
Basic Math
Make Cells

Control
Environment

Grid Topology
Array Handle
Invoke

W
o

rklet
VTK-m Framework

vtkm::cont vtkm::exec

Execution
Environment

Cell Operations

Field Operations
Basic Math
Make Cells

Control
Environment

Grid Topology
Array Handle
Invoke

W
o

rklet
VTK-m Framework

vtkm::cont vtkm::exec

Execution
Environment

Cell Operations

Field Operations
Basic Math
Make Cells

Control
Environment

Grid Topology
Array Handle
Invoke

Device
Adapter

Allocate
Transfer
Schedule

Sort
…

W
o

rklet
VTK-m Framework

vtkm::cont vtkm::exec

Device Adapter Contents
• Tag (struct DeviceAdapterFoo { };)
• Execution Array Manager

• Schedule

• Scan
• Sort
• Other Support algorithms

– Stream compact, copy, parallel find, unique

Control Environment Execution Environment

8 3 5 5 3 6 0 7 4 0 8 11 16 21 24 30 30 37 41 41

8 3 5 5 3 6 0 7 4 0 0 0 3 3 4 5 5 6 7 8

Transfer

functor
worklet worklet worklet worklet worklet worklet worklet functor

Schedule

Compute

Compute

VTK-m Arbitrary Composition

• VTK-m allows clients to access different memory layouts through the
Array Handle and Dynamic Array Handle.

–Allows for efficient in-situ integration

–Allows for reduced data transfer

Control Environment Execution Environment
Transfer

Control Environment Execution Environment
Transfer

functor()

Functor Mapping
Applied to Topologies

[Baker, et al. 2010]

functor()

Functor Mapping
Applied to Topologies

[Baker, et al. 2010]

2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz + NVIDIA Tesla K40c

VTK Serial

VTK-m Serial

VTK-m CUDA

0 0.5 1 1.5 2 2.5

Threshold

2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz + NVIDIA Tesla K40c

Data: 432^3

VTK Serial

VTK-m Serial

VTK-m CUDA

VTK-m CUDA [No
Transfer]

0 0.5 1 1.5 2 2.5 3

Marching Cubes

What We Have So Far

• Features

– Core Types

– Statically Typed Arrays

– Dynamically Typed Arrays

– Device Interface (Serial, CUDA, and TBB)

– Basic Worklet and Dispatcher

What We Have So Far

• Compiles with
– gcc (4.8+), clang, msvc (2010+), icc, and pgi

• User Guide work in progress

• Ready for larger collaboration

Questions?

m.vtk.org

