
TONY SCUDIERO - NVIDIA

GPU MEMORY BOOTCAMP II:
BEYOND BEST PRACTICES

GOAL
Introduce approaches to improving memory limited codes on GPU which go
beyond the standard “best practices”

Explain why these optimizations help

Address memory access issues in applications which are not “GPU-friendly”

DEMONSTRATION CODE
Memory Performance Characteristics of:

Random Data Lookup

Databases

Analytics

Graph-style problems

Motivating Example:

Material cross section calculation for Monte Carlo neutron transport calculations

DEMONSTRATION CODE

Data Array in Memory

Access of a Single Thread

THE DATA
Parameters:
N - The number of elements in the DataArray and OffsetArray

M – The number of different “tasks.” == number of GPU Threads.

Summands – Number of sequential data elements read by the algorithm

Iterations – Parameter controlling generation of IterationArray

T – Datatype of Data Array <template parameter>

Data:
DataArray - Randomly initialized data of a datatype (C++ template)

OffsetArray - Randomly initialized array of long integers between 0 and N

IterationArray - Array of size M specifying how many iterations each thread
executes

BASIC CODE

Type Abstraction

Random offset into dataArray

Outer Loop (iterations)

Inner Loop (Summands)

New dataArray offset each Iteration

Thread Parallelism:

M executions

ZERO ORDER OPTIMIZATION

Accumulate results to register

Unroll compiler directive

Write only once per iteration

LDG

STARTING PROBLEM
Summands: 32

Iterations: 32

Data Size: 10*2^20 (~10M) elements

M: 2^20 (~1M lookups)

Kernel float double

Original 18.22 34.57

Units: GB/sec

K40c, boost on, ECC off

32 threads/block

M=1, N=10, S=32, I=32

OPT-IN L1 CACHING
__ldg(&data);

K20, K40, K80, Maxwell

Load through Texture unit & try to hit in TEX cache

32 Byte load granularity

In-SM texture L1 cache (non-coherent, read only)

Good if using only a segment of the cache line immediately (diverged access)

-Xptxas=“-dlcm=ca”

Opt-in L1 caching on K40 & K80

128 Byte load granularity

Good if using a large portion of the cache line immediately (coalesced access)

PERFORMANCE

Units: GB/sec

K40c, boost on, ECC off

32 threads/block

M=1, N=10, S=32, I=32

Kernel float double

Original 18.22 34.57

Original (L1) 22.39 44.54

Original (TEX) 44.54 56.47

WHY CACHING SHOULD HELP:

Single thread brings in large chunk of data

Subsequent loads from that thread can hit in L1 at low latency

Why LDG/TEX performs better than L1 in this case

L1 brings in full cache lines(128bytes)

LDG brings in only necessary segments (32 bytes)

We are pulling the same cache lines / segments more than once, even in TEX

A single thread is not making it through it’s 32 or 128 bytes before they get evicted

Hit rate tells us this

UNFORSEEN CONSEQUENCES

0

10

20

30

40

50

60

0 100 200 300 400 500 600

A
L
G
O
R
IT
H
M
IC
 B
W
 G
B
/S

THREADS PER BLOCK

Performance vs. Block Size

gpu<float> LDG performance gpu<double> LDG performance

K40c, boost on, ECC off

i=32, s=32, M=10242, N=10

Full

Occupancy

WHAT HAPPENED?
Occupancy and cache per thread are contrarian measures

As occupancy increase, cache size remains stubbornly constant

=> bytes of cache per thread decreases

Expect hit rate to fall: more competition for the same cache lines

How you can tell: NVPROF/NVVP counters

l1_cache_global_hit_rate - % of reads that hit in L1 (Opt-In, K40/K80 only)

tex_cache_hit_rate - % of reads that hit in tex cache (__ldg() or texture access only)

l2_l1_read_hit_rate - % of l1 misses which hit in L2

l2_texture_read_hit_rate - % of texture misses which hit in L2

OCCUPANCY AND CACHING <FLOAT>

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

80

90

32 64 128 256 384 512

A
L
G
O
R
IT
H
M
 B
W
(G
B
/S
)

H
IT
 R
A
T
E
 (
%
)

THREADS PER BLOCK

TEX & L2 Hit Rates vs Block Size

gpu<float> LDG TEX Hit Rate gpu<float> LDG TEX L2 Hit Rate gpu<float> LDG performance

K40c, boost on, ECC off

i=32, s=32, M=10242, N=10

OCCUPANCY AND CACHING <DOUBLE>

0

10

20

30

40

50

60

0

10

20

30

40

50

60

32 64 128 256 384 512

A
L
G
O
R
IT
H
M
 B
W
 (
G
B
/S
)

H
IT
 R
A
T
E
 (
%
)

THREADS PER BLOCK

TEX & L2 Hit Rates vs Block Size

gpu<double> LDG TEX Hit Rate gpu<double> LDG TEX L2 Hit Rate gpu<double> LDG performance

K40c, boost on, ECC off

i=32, s=32, M=10242, N=10

OCCUPANCY AND CACHING
According to GPU101: Latency hiding through parallelism

Higher Occupancy improves latency hiding

better latency hiding is better performance

ergo “Higher Occupancy has higher performance”

This is a broad generalization with many exceptions

GTC2010: “Better Performance at Lower Occupancy” V. Volkov

With Fermi and caching, lower occupancy can be better

Latency hiding can be done in-thread, not just across threads

WHAT ABOUT L2 CACHING?

K40c, boost on, ECC off

i=32, s=32, M=10242, N=10

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 384 512

A
L
G
O
R
IT
H
M
 B
W
 (
G
B
/S
)

H
IT
 R
A
T
E
 (
%
)

THREADS PER BLOCK

L2 Hit rate and Performance vs. Block Size

gpu<float> L2 Hit Rate gpu<double> L2 Hit Rate gpu<float> performance gpu<double> performance

TL;DR; LAST 9 SLIDES
When latency bound caching may help, try small blocksizes to increase
effective cache per thread

Use dynamic shared to limit occupancy

Latency reduction of caching can improve performance more than latency
hiding of parallelism

Especially if you don’t have enough compute or memory parallelism to fully hide latency

I.E. Traditionally non-GPU-friendly workloads

PERFORMANCE

Units: GB/sec

K40c, boost on, ECC off

32 threads/block

M=1, N=10, S=32, I=32

Kernel float double

Original 18.22 34.57

Original (L1) 22.39 44.54

Original (TEX) 44.54 56.47

DATA LOAD SIZE
GPU Loads: 1, 2, 4, 8, 16 bytes / thread

Thread View: A coalesced load of 4 bytes per thread (float)

SM View: 128 Bytes, 1 Cache line in flight/load/warp

L2/DRAM View: 4 memory transactions in flight/load/warp

Thread View: A coalesced load of 8 bytes per thread (float2, double)

SM View: 256 Bytes, 2 cache lines in flight/load/warp

L2/DRAM View: 8 memory transactions in flight/load/warp

Thread View: A coalesced load of 16 bytes per thread (float 4, double2)

SM View: 512 bytes, 4 cache lines in flight/load/warp

L2/DRAM View: 16 memory transactions in flight/load/warp

DATA LOAD SIZE
More transactions on the bus per load

Fewer loads per warp are needed to saturate DRAM bandwidth

Immediately uses larger area of the transferred line

More efficient use of achieved bandwidth

memcpy experiment

2 requests / thread experiment

Tesla K20X

memcpy experiment

2 requests / thread experiment

Tesla K20X

LOAD AS KERNEL

USING LOAD AS

random_access_loadAs<float, float4, 4> <<<grid,thread>>>(...)

random_access_loadAs<double, double2, 2) <<<grid,thread>>>(...)

Caveat: Data reads must have alignment of the larger loadAs_t type

PERFORMANCE

Kernel float float (TEX) double double (TEX)

Original 18.22 44.54 34.57 56.47

loadAs 42.35 45.21 50.34 52.42

Units: GB/sec

K40c, boost on, ECC off

32 threads/block

M=1, N=10, S=32, I=32

LINES IN FLIGHT
128-byte cache lines

(4 DRAM transactions/line)

@100% occupancy,

2048 threads on the SM = 64 warps

1 32-bit coalesced ops/ thread (warp)

= 64 lines/SM

2 coalesced ops/thread

= 128 lines/SM

MEMORY LEVEL PARALLELISM
Unroll the summand loop, issue all loads before first use (loadAs_s4)

PERFORMANCE

Extra lines/transactions in flight helps, but too many causes cache evictions
in TEX (hit rate decreases)

Kernel float float (TEX) double double (TEX)

Original 18.22 44.54 34.57 56.47

loadAs 42.35 45.21 50.34 52.42

loadAs(unroll 2) 42.61 50.34 50.91 58.99

loadAs(unroll 4) 43.07 48.02 47.77 55.43

Units: GB/sec

K40c, boost on, ECC off

32 threads/block

M=1, N=10, S=32, I=32

THE STORY SO FAR
Things that helped performance:

Issuing through texture unit (__ldg() and running at lower occupancy

Issuing loads for larger datatypes

Issuing more loads before first use

All of this is targeted at getting better use of the global memory bus

Get higher bandwidth, even when threads are limited by latency

Make more efficient use of the bytes we move

COMPUTE DIVERGENCE

NEW PROBLEM
1M threads (M=1)

10M data elements (N=10)

32 summands per iteration (S=32)

of iterations uniformly distributed in [1, 128] (I=128, D=128)

Note: Previous results are incomparable (different workloads)

IN THE CODE

Each thread runs for a

different number

of iterations

COMPUTE DIVERGENCE
Usually we think of divergence from FP utilization

Think instead about memory system utilization

Remember the warp:

LD.E R2, [R6]

0
x
0
0
F
B
6
A
E
0

R6

thread 0

0
x
0
0
F
B
6
A
E
4

1

0
x
0
0
F
B
6
A
E
8

2

0
x
0
0
F
B
6
A
E
B

3

0
x
0
0
F
B
6
A
F
0

4

0
x
0
0
F
B
6
A
F
4

5

0
x
0
0
F
B
6
A
F
8

6

0
x
0
0
F
B
6
A
F
B

7

0
x
0
0
F
B
6
B
0
0

8

0
x
0
0
F
B
6
B
0
4

9

0
x
0
0
F
B
6
B
0
8

10

0
x
0
0
F
B
6
B
0
B

11

0
x
0
0
F
B
6
B
1
0

12

0
x
0
0
F
B
6
B
1
4

13

0
x
0
0
F
B
6
B
1
8

14

0
x
0
0
F
B
6
B
1
B

15

Half of warp

shown for clarity

MEMORY OPS FROM DIVERGED WARP

0
x
0
0
F
B
6
A
E
0

R6

thread 0

0
x
0
0
F
B
6
A
E
4

1

0
x
0
0
F
B
6
A
E
8

2

0
x
0
0
F
B
6
A
E
B

3

0
x
0
0
F
B
6
A
F
0

4

0
x
0
0
F
B
6
A
F
4

5

0
x
0
0
F
B
6
A
F
8

6

0
x
0
0
F
B
6
A
F
B

7

0
x
0
0
F
B
6
B
0
0

8

0
x
0
0
F
B
6
B
0
4

9

0
x
0
0
F
B
6
B
0
8

10

0
x
0
0
F
B
6
B
0
B

11

0
x
0
0
F
B
6
B
1
0

12

0
x
0
0
F
B
6
B
1
4

13

0
x
0
0
F
B
6
B
1
8

14

0
x
0
0
F
B
6
B
1
B

15

Half of warp

shown for clarity

0
x
0
0
F
B
6
A
E
4

0
x
0
0
F
B
6
A
E
8

0
x
0
0
F
B
6
A
E
B

0
x
0
0
F
B
6
A
F
4

0
x
0
0
F
B
6
A
F
8

0
x
0
0
F
B
6
B
0
0

0
x
0
0
F
B
6
B
0
B

0
x
0
0
F
B
6
B
1
0

0
x
0
0
F
B
6
B
1
4

0
x
0
0
F
B
6
B
1
B

Few addresses generated by warp

Fewer Loads in Flight

Less DRAM Bandwidth Utilization

LOADS IN FLIGHT PER SM
When diverged, lines in flight/warp decreases

average dram transactions in flight decreases

Mitigating:

Issue loads for larger datatypes:

Better use of cache lines loaded

Memory Level Parallelism

Issue multiple independent memory operations

More transactions in flight per thread

Things we’ve already done in the unrolled loadAs kernel

DIVERGED COMPUTATION PERFORMANCE

Kernel float float (TEX) double double (TEX)

Original 19.61 45.55 35.70 51.65

loadAs 43.23 46.72 51.64 55.90

loadAs(unroll 2) 45.17 59.96 52.42 64.84

loadAs(unroll 4) 44.93 53.27 52.30 54.55

Units: GB/sec

K40c, boost on, ECC off

32 threads/block

M=1, N=10, S=32, I=128 D=128

IN SUMMARY
Access patterns to memory

Memory Divergence

Compute Divergence

Optimizing access

Use of texture unit for on-SM caching and fine grain access

Interaction of caching and occupancy

Use of large data types to increase efficiency / loads in flight

Improves performance of divergent codes

QED

