
www.bsc.es

OpenMPSuperscalar: Task-Parallel Simulation and
Visualization of Crowds with Several CPUs and GPUs

Hugo Pérez
UPC-BSC

March 2015

Benjamin Hernandez
Oak Ridge National Lab

Isaac Rudomin
BSC

OUTLINE

● Introduction
● Algorithm
● CUDA version
● OpenMP Superscalar - OmpSs
● OmpSs version
● Results
● OmpSs and OpenGL
● Flexible Interactive Parallel Architecture for Visualization
● Conclusions
● Future Work

3

WHAT IS A CROWD SIMULATION?

It is the process of simulate the behavior of a large number of characters.

Since each character takes decisions independently is a good candidate
for parallel processing.

4

APPLICATIONS

Entertainment: Movies & Videogames

Urban Planning: Building construction & traffic routes

 Training: Emergency Evacuation & Disaster Prevention

5

ALGORITHM

Algorithm:
– In our simulation wer represent the world

(Navigation space) using a 2D grid

1. Initialize the agents with random values
for: position, direction, and speed

2. For each agent:
• Calculate collision avoidance

– Check cells in counterclockwise in the eight
directions within the given radius.

• Update position and world cell status.
– Move the agent in the direction in which

there are more free cells.

6

ALGORITHM: MONOLITHIC WORLD

The main computation involves:
● Collision avoidance
● Update agents position & world status

We execute these operations in the GPU using CUDA.

If we compute the data in a monolitic way:
● We transfer all the data to the GPU once, all iterations happens in the

GPU, therefore we get significant speed up.
● It is simple
● The number of agents is limited for the size of the GPU memory.
● Works just for one GPU.

ALGORITHM: TILED WORLD

7

For further scaling we divide the world in tiles

1. Set-up the communication topology between
tiles, i.e. how they will interchange data

2. Initialize data

3. Exchange halos between neighbors tiles (yellow)

4. For each agent:
● Compute collision avoidance
● Update agent position and world cells status

5. Exchange agents

ALGORITHM: TILED WORLD 2

8

If we divide in tiles, the system has these characteristics:

● We can increase the number of agents in the simulation even using only

one GPU, (the limit is the CPU memory)

● Using streams we can process different kernels in parallel

● We can overlap communication with computation

● We can use more than one GPU

● Implies new tasks

CUDA VERSION 1

Create a special structure to manage the data in the GPUCreate a special structure to manage the data in the GPU

typedef struct {
cudaStream_t stream[MAX_NUM_BLOCKS];
float4 *d_agents[MAX_NUM_BLOCKS];
float4 *d_ids[MAX_NUM_BLOCKS];
int *d_world[MAX_NUM_BLOCKS];

} TGPUplan;

typedef struct {
cudaStream_t stream[MAX_NUM_BLOCKS];
float4 *d_agents[MAX_NUM_BLOCKS];
float4 *d_ids[MAX_NUM_BLOCKS];
int *d_world[MAX_NUM_BLOCKS];

} TGPUplan;

cudaMallocHost(...); cudaMallocHost(...);

Allocate special host memory (pinned memory)Allocate special host memory (pinned memory)

CUDA VERSION 2

int deviceCount;
cudaGetDeviceCount(&deviceCount) ;

for (int i=0; i < deviceCount; i++)
{
 cudaSetDevice(i);
 for (int j = 0; j < num_blocks/deviceCount; j++)
 {

 cudaStreamCreate(&plan[i].stream[j]);

 cudaMalloc((void**)&plan[i].d_agents[j], agents_total_buffer *sizeof(float4));
 cudaMalloc((void**)&plan[i].d_ids[j], agents_total_buffer *sizeof(float4));
 cudaMalloc((void**)&plan[i].d_world[j], world_cells_block *sizeof(int));

 }
}

int deviceCount;
cudaGetDeviceCount(&deviceCount) ;

for (int i=0; i < deviceCount; i++)
{
 cudaSetDevice(i);
 for (int j = 0; j < num_blocks/deviceCount; j++)
 {

 cudaStreamCreate(&plan[i].stream[j]);

 cudaMalloc((void**)&plan[i].d_agents[j], agents_total_buffer *sizeof(float4));
 cudaMalloc((void**)&plan[i].d_ids[j], agents_total_buffer *sizeof(float4));
 cudaMalloc((void**)&plan[i].d_world[j], world_cells_block *sizeof(int));

 }
}

Split the data between the
GPUs

Split the data between the
GPUs

Create StreamsCreate Streams

Allocate memory in the GPUAllocate memory in the GPU

Select the GPU in each operation

CUDA VERSION 3

for (int i = 0; i < deviceCount; i++){
 cudaSetDevice(i);
 for (int j = 0; j < num_blocks/deviceCount; j++) {
 int block = j + (i*num_blocks/deviceCount);

 //copying H2D
 cudaMemcpyAsync(plan[i].d_agents[j], agents[block], ... plan[i].stream[j]);
 cudaMemcpyAsync(plan[i].d_ids[j], ids[block], ... plan[i].stream[j]);
 cudaMemcpyAsync(plan[i].d_world[j], world[block], ... plan[i].stream[j]);

 refreshData(plan[i].d_agents[j], plan[i].d_ids[j], plan[i].d_world[j], ...
plan[i].stream[j]);

 //copying D2H
 cudaMemcpyAsync(agents[block], plan[i].d_agents[j], ... plan[i].stream[j]);
 cudaMemcpyAsync(ids[block], plan[i].d_ids[j], ... plan[i].stream[j]);
 cudaMemcpyAsync(world[block], plan[i].d_world[j], ... plan[i].stream[j]); … } }

for (int i = 0; i < deviceCount; i++){
 cudaSetDevice(i);
 for (int j = 0; j < num_blocks/deviceCount; j++) {
 int block = j + (i*num_blocks/deviceCount);

 //copying H2D
 cudaMemcpyAsync(plan[i].d_agents[j], agents[block], ... plan[i].stream[j]);
 cudaMemcpyAsync(plan[i].d_ids[j], ids[block], ... plan[i].stream[j]);
 cudaMemcpyAsync(plan[i].d_world[j], world[block], ... plan[i].stream[j]);

 refreshData(plan[i].d_agents[j], plan[i].d_ids[j], plan[i].d_world[j], ...
plan[i].stream[j]);

 //copying D2H
 cudaMemcpyAsync(agents[block], plan[i].d_agents[j], ... plan[i].stream[j]);
 cudaMemcpyAsync(ids[block], plan[i].d_ids[j], ... plan[i].stream[j]);
 cudaMemcpyAsync(world[block], plan[i].d_world[j], ... plan[i].stream[j]); … } }

Transfer data between the host and the GPUs

CUDA VERSION 4

 for (int i=0; i < deviceCount; i++)
 {

cudaSetDevice(i);
for (int j = 0; j < num_blocks/deviceCount; j++)

cudaStreamSynchronize(plan[i].stream[j]);
 }

Synchronize operations

 for (int i = 0; i < deviceCount; i++)
 {
 cudaSetDevice(i);
 for (int j = 0; j < num_blocks/deviceCount; j++)
 {
 cudaFree(plan[i].d_agents[j]);
 cudaFree(plan[i].d_ids[j]);
 cudaFree(plan[i].d_world[j]);
 cudaStreamDestroy(plan[i].stream[j]);
 }
 }

Release GPU resources

OPENMP SUPER SCALAR (OMPSS)

OmpSs does all these operations in an automatic way or some of
them are not necessary.

● You do not need to select the GPU

● You do not need to allocate special memory in the host (pinned memory)
or declare different variables for host and GPUs

● You do not have to transfer data between the host and GPUs

● You do not need to create streams, Ompss implements them by default

13

OPENMP SUPER SCALAR (OMPSS) 2

OmpSs
• Allows us to perform tasks based on asynchronous parallelism.
• Its syntax is an extension of the directives used by OpenMP.
• Can be also applied to accelerators such as GPU.

Task Dependency Graph

14

OMPSS SYNTAX

15

#pragma omp target device ({ smp | cuda | opencl }) \
 [ndrange (…)]\

 [implements (function_name)]\
 { copy_deps | [copy_in (array_spec ,...)] [copy_out (...)]
[copy_inout (...)] }

Task implementation for a GPU device
The compiler parses CUDA or OpenCL kernel invocation syntax

Task implementation for a GPU device
The compiler parses CUDA or OpenCL kernel invocation syntax

Allows Multiple task implementations Allows Multiple task implementations

Nanox++ ensures data is accessible in the device address space Nanox++ ensures data is accessible in the device address space

#pragma omp taskwait [on (...)] [noflush]

Tasks syncTasks sync Wait for specific variablesWait for specific variables

Avoid copy of dataAvoid copy of data

#pragma omp task [in(...)] [out(...)] [inout (...)]
{ function or code block }

Define the data
dependences

Define the data
dependences

MINOTAURO

16

GPU Cluster.
128 Bullx B505 blades.
Hybrid architecture each node:
● 2x Intel Xeon E5649 6-Core at 2,53 GHz
● 24 GB of RAM memory, 12MB of cache memory
● 2x NVIDIA M2090, each one:

● 512 CUDA Cores, 6GB of GDDR5 Memory.

CROWD DEFINITION OF TASKS 1

17

#pragma omp task inout(
[agents_total_buffer]agents[0;count_agents_total],
[agents_total_buffer]ids[0;count_agents_total],
[world_cells_block]world)
void updatePositions(float4 *agents, float4 *ids, int *world, ...) { ... }

bool runSimulation()
{ ... //Execution of task
 for (int i = 0; i < num_blocks; i++)

updatePositions(agents[i], ids[i], world[i], ...);
...}

Maintain memory consistency only for a specific region of dataMaintain memory consistency only for a specific region of data

Definition of CPU Task

Call the function in a normal wayCall the function in a normal way

CROWD DEFINITION OF TASKS 2

18

Incremental definition of tasks
Flexible use of resources
Scaling through different number of CPU cores

Using 12 CPU cores
All functions converted to tasks

Using 8 CPU cores
Just 1 function converted to task

Using Extrae & Paraver
to get the traces

CROWD DEFINITION OF TASKS 3

19

#pragma omp target device(cuda)
ndrange(2, (int)sqrt(count_agents_total), (int)sqrt(count_agents_total), 8, 8)
implements(updatePositions)
copy_deps
#pragma omp task inout(
 ([agents_total_buffer]agents)[0;count_agents_total],
 ([agents_total_buffer]ids)[0:count_agents_total],
 [world_cells_block]world) label(refreshDataGPU)
extern "C" __global__ void updatePositionsGPU(float4 *agents, float4 *ids, int
*world, ...);

bool runSimulation()
{... //Task execution
 for (int i = 0; i < num_blocks; i++)

updatePositions(agents[i], ids[i], world[i], ...);
 …}

Definition of GPU task

Tasks must have the same parameters for both versionsTasks must have the same parameters for both versions

CROWD DEFINITION OF TASKS 4

20

General view Two CPUs core to manage two GPUsTwo CPUs core to manage two GPUs

Execution of cuda kernels in the GPUExecution of cuda kernels in the GPU

CROWD DEFINITION OF TASKS 5

21

Zoom to see the operations inside GPU
Overlap communication with computationOverlap communication with computation

RESULTS

22

CUDA 1GPU Init CUDA 1GPU OmpSs 1GPU CUDA 2GPU OmpSs 2GPU
0

20

40

60

80

100

120

140

Speedup for 67 Millions of Agents
S

p
e

e
d

u
p

The speedup is calculated based on a core cpu execution of sequential version.
Simulating 64 Millions of agents, the limit for the monolitic data version.

OMPSS AND OPENGL INTERACTION

OpenGL uses one GPU for rendering, while OmpSs uses the other one GPU for
computation.
In OpenGL sharing GPUs between different threads is difficult.
Next generation OpenGL, called Vulkan will need the user to define tasks
and schedule them. OmpSs will make this easier.

23

Data TransfersData Transfers

Kernel ExecutionKernel Execution

Flexible Interactive Parallel Architecture for Visualization

Can use different hardware setups by using combinations of:
● in situ visualization
● data streaming,
● virtualGL or web clients
It has been used in different domains, and can thus exchange simulation and rendering
engines as needed. For example:
● Crowd simulation system developed with MPI+CUDA using varied and animated

character crowd rendering engine using in-situ visualization in a GPU Cluster.
● Crowd simulation with Pandora: An HPC Agent-Based Modelling framework*, using

crowd rendering engine via data streaming
● Fluid Visualization for Active Liquids. With UB Physics Dept. Better user interface,

and support for state of the art visualization techniques, unavailable in VMD.
● Web accesible version of PELE - Protein Energy Landscape Exploration**

Work in collaboration with group led by Fernando Cucchietti, and involving
Computer Sciences, Life Sciences and CASE from BSC, as well as MOVING from
UPC.

*http://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
**https://pele.bsc.es/redmine/projects/pele-web-app

24

http://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
https://pele.bsc.es/redmine/projects/pele-web-app

25

IN SITU

DUMB CLIENT
CLUSTER W GPUs

Simulation Render
Simulation Render

Simulation Render

Composition
Display

IMAGE
STREAM

Steer,
Camera

26

STREAMING

CLIENT w GPU
CLUSTER

Simulation Render Display
Simulation

Simulation
DATA
STREAM

27

WEB

Streaming or IN Situ
BROWSER

Simulation Render Compression
Display

IMAGE
STREAM

Steer,
Camera

CONCLUSIONS
Algorithm with CUDA requires explicit operations:
● Device selection.
● Data transfers between host and devices.
● Flow control through queues and events.
● Among others.

Difficult to program and prone to errors.

OmpSs:
● Facilitates use of all available GPUs in one node
● Allows us to make flexible use of resources, exploiting its full capacity
● Can scale the system to multiple CPUs or GPUs without modify the program.

For one GPU we get similar results than performing programming GPUs
using CUDA more traditional way.
For two GPUs we get better results for OmpSs version.

OmpSs interacts with OpenGL for Visualization.

28

CONCLUSIONS 2
The visualization system has proven its flexibility in using

● different simulation and rendering engines
● the range of plattforms

29

FUTURE WORK

● We will work with OmpSs in a cluster comparing MPI+OmpSs+CUDA
vs OmpSsCluster+CUDA

● We will study how Vulkan and OmpSs interact
● We will continue working on different schemes to couple simulation with

visualization in the cluster that use Level of Detail rendering and partial
composition.

● More use of compositing for coupling our crowd visualization system with:
• other simulators (FlameGPU for example)
• renderers and game engines (OptiX, Unreal)
• GIS systems.

30

31

ACKNOWLEDGMENTS

● Nvidia and BSC through their CUDA Center of Excellence.

● Interministerial Commission of Science and Technology of
Spain (CICYT).

● Oak Ridge Leadership Computing Facility ORNL

● Mexican Research and Council (CONACyT).

● And of course the development team of OmpSs.

OmpSs is open source! http://pm.bsc.es/ompss

For their support in this project.

32

 MORE INFO

• Isaac Rudomin (BSC)
isaac.rudomin@bsc.es

• Benjamin Hernandez
(BSC,ORNL)
hernandezarb@ornl.gov

• Hugo Perez (UPC-BSC)
hugo.perez@bsc.es

March 2015

	Slide 1
	IntroDuction
	Slide 3
	Slide 4
	Initial version
	initial version
	dividing the domain
	dividing the domain
	simplification of syntax
	simplification of syntax
	simplification of syntax
	Slide 12
	Openmp Super Scalar
	Slide 14
	OMPSS syntax
	Resultados
	definition of tasks
	Slide 18
	definition of tasks
	Slide 20
	Slide 21
	Slide 22
	Crowds : OMPSS, CUDA, OpenGL
	Slide 24
	 VISUALIZATION (IN SITU + COMPOSITING)
	 VISUALIZATION (CLIENT)
	Web
	Conclusions
	Slide 29
	Slide 30
	Acknowledgments
	 MORE INFO

