
www.bsc.es

Exploiting CUDA Dynamic Parallelism 

for low power ARM based prototypes
Vishal Mehta

Engineer, Barcelona Supercomputing Center

vishal.mehta@bsc.es



BSC/UPC CUDA Centre of Excellence (CCOE)

Training

• Build an education program on parallel programming using CUDA, OpenCL and 

OmpSs

• PUMPS summer school 2010-2015, courses at BSC and UPC

Research

• Generation, Simulation and Rendering of Large Varied Animated Crowds that 

attendees can get a presentation using OmpSs at current GTC

• HERTA Security GPU-based machine learning for real-time face 

recognition, and bio-Marketing, also presented at this GTC.

• Exploring the potential of low-power GPU clusters as high-performance 

platforms involved in Mont-Blanc and PRACE prototypes 

2



Top500 Power Consumption Evolution

Higher performance, at the expense of higher power

0

1

2

3

4

5

6

7

8

2008 2009 2010 2011 2012 2013

P
o

w
e
r 

[M
W

] TOP10

TOP50

TOP500

x3.25 in 5y

x3.13 in 5y

x5.04 in 5y

3



Mont-Blanc Project

European approach for energy efficient HPC systems.
http://www.montblanc-project.eu

Partners:

Objectives:

•To develop a full energy-efficient HPC prototype using low-power commercially available embedded

technology.

•To develop a portfolio of exascale applications to be run on this new generation of HPC systems.

• Exploring different alternatives for the compute node (from low-power mobile sockets to special-purpose

high-end ARM chips), and its implications on the rest of the system

4



Euroserver Project

http://www.euroserver-project.eu

Partners:

European approach for energy efficient data servers.

Objectives:

•Reduced Energy consumption by: (i) using ARM (64-bit) cores (ii) drastically reducing the core-to-memory

distance (iii) improving on the "energy proportionality".

•Reduced Cost to build and operate each microserver, (i) improved manufacturing yield (ii) reduced

physical volume of the packaged interposer module (iii) and energy efficient semiconductor process

(FDSOI) .

5



Mont-Blanc Prototype Ecosystem

6



Outline

1.Pedraforca Prototype Architecture

2.Evaluation application

3.Exploiting Dynamic Parallelism

4.Some benchmarks and results

5.Limitations & Conclusions

7



Pedraforca : Prototype Node Architecture

E4 ARKA single node desktop unit

8



Pedraforca: Cluster

3 ⨉ bullx 1200 rack

78 compute nodes

2 login nodes

4 36-port InfiniBand switches (MPI)

2 50-port GbE switches (storage)

9



Low power ARM

Component Max power usage

Tesla K20 235

Board 25

CPU 5

Total 265

Component Max power usage

Tesla K20 235

Board 80

CPU 90

Total 405

Comparing Power Budgets

Quad core Intel i5-3570K @3.4GHz , 

ASUS P8Z77 V-pro

Tegra 3 (quad core ARM A9 @ 1.3 GHz), 

Mini ITX – Carrier   

X86_64 based system

10



Outline

1.Pedraforca Prototype Architecture

2.Evaluation application

3.Exploiting Dynamic Parallelism

4.Some benchmarks and results

5.Limitations & Conclusions

11



Thick restarted Lanczos Algorithm in Lattice QCD

• Each point on lattice is SU(3) vector and links connecting points are SU(3) matrix.

• Using thick restarted Lanczos algorithm for generating eigenpairs of the lattice

• 80 % cuBLAS routines 

• Average number of cuBLAS calls: 60000 – 90000 depending on lattice 

configuration

• Process lattice from multiple time steps in parallel

SU(3) vector (complex double)

SU(3 x 3) matrix(complex 

double)

12

At time ‘t’



Evaluation Example – Lanczos Iteration

• Large number of BLAS operations

• Dominated by global orthogonalization

module which includes BLAS

• Implemented using cuBLAS, highly

modularized and easy to use

• Iterations are not independent of each

other

Initial vector (v0)

Apply matrix

Vi =  A (Vi-1)

N 

iterations

Compute alpha

αi =  dot(Vi,Vi-1)

AXPY kernel

Vi =  Vi - αi Vi-1 – βi-1 Vi-2

Compute beta

βi = Euclidean norm(Vi)

New subspace vector

Vi = Vi / βi

Global 

orthogonalization

13



Bottlenecks

• Large number of calls to cuBLAS.

• Overall algorithm is serial

• Dominated by CPU’s capability of

launching cuBLAS kernels

• ARM processor is not fast enough

to quickly launch kernels on GPU.

GPU in underutilized

CPU works as 

coordinator

CPU pipeline
GPU pipeline

Start

Apply matrix

End

cuBLAS dot 

kernel

cuBLAS AXPY 

kernel

Serial Dependency

Algorithm Implementation for the Prototype

GPU slave 

executes kernels

14



Outline

1.Pedraforca Prototype Architecture

2.Evaluation application

3.Exploiting Dynamic Parallelism

4.Some benchmarks and results

5.Limitations & Conclusions

15



Exploiting Dynamic Parallelism

The reason for dynamic parallelism, is to make GPU adapt to data 

Can we exploit further to solve bottlenecks and save power ?

16



Approach for Exploiting Dynamic Parallelism for Low Power Prototype 

CPU pipeline GPU pipeline

Start
Apply 

matrix

End

cuBLAS dot 

kernel

cuBLAS

AXPY kernel

Serial Dependency

CPU pipeline GPU pipeline

Start

End

cuBLAS

dot kernel

cuBLAS

AXPY 

kernel

Wrapper kernel, 1 control 

thread
Apply 

matrix

CPU works as 

coordinator

GPU slave 

executes kernels

CPU starts and 

ends wrapper

GPU wrapper 

coordinates the tasks

17



__global__ Applymatrix(..,..)

int main()

{

copytoGPU(); 

Applymatrix<<<…,…>>>();

cublasZdot();

cublasZAXPY();

copyfromGPU();

}

__global__ Applymatrix(..,..)

__global__ wrapper(..,..)

{

Applymatrix<<<…,…>>>();

cublasZdot();

cublasZAXPY();

}

int main()

{

copytoGPU();

wrapper<<<1,1>>>();

copyfromGPU();

}

Example code:1 - Simple Wrapper
Original code Code with wrapper

18



Multiple Threads in Wrapper
CPU pipeline GPU pipeline

Start

End

cuBLAS

dot 

kernel

cuBLAS

AXPY 

kernel

GPU wrapper, 2 CUDA thread

Apply 

matrix

cuBLAS

dot 

kernel

cuBLAS

AXPY 

kernel

Apply 

matrix

When wrapper executed

with more than one

thread to process multiple

instances.

Wrapper<<<1,2>>>()
PROBLEM

Threads in same block 

launch kernels one after 

another. Multiple 

instances are not 

executed simultaneously.

19



Bottleneck caused by multiple threads in wrapper

CPU pipeline GPU pipeline

Start

End

cuBLAS

dot kernel

cuBLAS

AXPY 

kernel

GPU wrapper, 2 CUDA thread

Apply 

matrix
cuBLAS

dot kernel

cuBLAS

AXPY 

kernel

Apply 

matrix

SOLUTION

CUDA streams 

created on GPU 

side

OUR GOAL

Wrapper

20



Solution for processing multiple instances by CUDA streams 

CPU pipeline GPU pipeline

Start

End

cuBLAS

dot kernel

cuBLAS

AXPY 

kernel

GPU wrapper, 2 CUDA thread

Apply 

matrix
cuBLAS

dot kernel

cuBLAS

AXPY 

kernel

Apply 

matrix

Modification to code

__global__ wrapper(..,..)

{

cudaStream_t stream;

cudaStreamCreateWithFlags(&str

eam,cudaStreamNonBlocking);

cublasSetStream(….,stream);

Applymatrix<<<…,…stream>>>();

cublasZdot();

cublasZAXPY();

cudaStreamDestroy(stream);

}

CUDA create 

stream

CUDA create 

stream

Wrapper

21



Outline

1.Pedraforca Prototype Architecture

2.Evaluation application

3.Exploiting Dynamic Parallelism

4.Some benchmarks and results

5.Limitations & Conclusions

22



0

1

2

3

Speed Up

Speed Up

cuBLAS kernel launch scaling
No of kernel 

calls

cuBLAS calls by 

CPU (seconds)

cuBLAS calls 

GPU thread 

(seconds)

Speed up

1 x 103 1.72 1.43 1.20 x

3 x 103 2.23 1.62 1.37 x

5 x 103 4.7 2.9 1.62 x

10 x 103 7.52 3.5 2.14 x

50 x 103 11.78 4.2 2.80 x

cuBLAS level 1 routines

40% reduction kernel

30% AXPY kernel

30% dot product

no. of cuBLAS calls

S
p
e
e
d
 u

p
 

23



4.4 6.4
11.2

2.3 4.1
7.5

5.2
7.6

12.8

2.8
5.2

8.7

0

10

20

30

40

50

24 32 48

Kernel calls by CPU Kernel calls by CPU (with streams)

Kernel calls by GPU Kernel calls by GPU (with streams)

Application Performance (High Frequency CPU)

Quad core intel i5-3570K @3.4GHz

Code with wrapper may be slower on a system with fast CPU

24

Lattice size

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)



Application Performance (Pedraforca Prototype)

Tegra 3 - quad core ARM A9 @ 1.3 GHz

Lattice size

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Code with wrapper kernel performs better on ARM based system

25

13.6

20.4

36.4

15.2

23.5

40.6

5.3 7.5
13.1

2.7
5.2

9

0

10

20

30

40

50

24 32 48

Kernel calls by CPU Kernel calls by CPU (with streams)
Kernel calls by GPU Kernel calls by GPU (with streams)



Comparing systems

26

A B
Quad core i5-

3570K@3.4G

Hz

Tesla K20 Tesla K20

Quad core 

ARM A9@1.3 

GHz



Comparing power footprint – Without CUDA streams

QCD lattice 

size

A B A B A B

24 4.4 5.3 367 245 1614.8 1298.5

32 6.4 7.5 359 246 2297.6 1845

48 11.2 13.1 365 243 4088 3183.3

Execution time (seconds) Average Power (W) Energy Consumption (J)

A : All kernels launched by CPU(Quad core intel i5-3570K@3.4GHz) 
B : All kernels launched by GPU (Tegra 3-quad core ARM A9@1.3 GHz)   

16
18
20
22
24

24 32 48

Energy savings (%)

Energy savings 
(%)

Lattice size

P
e
rc

e
n
ta

g
e

27



Comparing power footprint – With CUDA streams

QCD lattice 

size

A B A B A B

24 2.3 2.7 420 286 966 772.2

32 4.1 5.2 426 287 1746.6 1392.4

48 7.5 9.0 425 282 3187.5 2538

Execution time (seconds) Average Power (W) Energy Consumption (J)

16
18
20
22
24

24 32 48

Energy savings (%)

Energy savings 
(%)

Lattice size

P
e
rc

e
n
ta

g
e

28

A : All kernels launched by CPU(Quad core intel i5-3570K@3.4GHz) 
B : All kernels launched by GPU (Tegra 3-quad core ARM A9@1.3 GHz)   



Scaling across Cluster

Without GPU Direct With GPU Direct

State of art technologies like GPU Direct, CUDA aware MPI can significantly improve 

data transfers among multiple nodes

Wrapper kernel ensures, low frequency CPU has sufficient time for communication.

CPU pipeline GPU pipeline
Start

End

Some 

dynamic 

CUDA 

processing 

load

I/O 

with 

networ

k card

G

P

U

m

e

m

or

y

CPU pipeline GPU pipeline
Start

End

Some 

dynamic 

CUDA 

processing 

load

I/O 

netwo

rk 

card

G

P

U

m

e

m

or

y

29



Pedraforca limitations

30

GOOD NEWS!!

64 bit SoC, upto 4GB support

Driver support for 32 bit

32 bit SoC



Conclusions

• With CUDA dynamic parallelism and CUDA streams in action we are able to

save roughly 20 % of power on Pedraforca prototype.

• CUDA Dynamic Parallelism helps reducing GPU-CPU communication, hence

faster CPU is not always necessary.

• More libraries supporting dynamic parallelism have to be developed.

• Embedding ARM cores inside big accelerator like Tesla could be promising

31


