
Performance Gains Achieved Through
Modern OpenGL in the Siemens
DirectModel Rendering Engine

Jeremy Bennett [Senior Software Engineer, Siemens PLM Software]

Michael Carter [Senior Key Expert, Siemens PLM Software]

DirectModel: History
• Developed as joint venture between EAI and HP as large model

visualization in 1997

• Now the graphics engine underlying all Siemens Teamcenter
Visualization products

• Originally implemented against OpenGL 1.0 and Starbase (who
remembers this?)

• Now pushing the envelope into OpenGL 4.5 features

DirectModel: Support
• Platforms: Windows, Linux, Mac, iOS, Android

• GPUs: Nvidia Quadro & Grid, AMD FireGL & FirePro, Intel HD
4500>

• Support variety of OpenGL levels

 OpenGL 1.1

OpenGL 1.5 Vertex Buffer Objects

OpenGL 2.1 Shaders

OpenGL 3.1 Uniform Buffer Objects

OpenGL 4.3 Multi Draw Elements Indirect

OpenGL 4.5 Direct State Access

Presentation
State Architecture

• Current architecture and how it maps to GL

Pipeline Optimizations

• No single magic bullet but rather a whole continuum

• Motivated by

• Real World Experiences

• GTC S3032: Advanced SceneGraph Rendering Pipeline

• GTC S4379: OpenGL Scene-Rendering Techniques

• GDC ‘14: Approaching Zero Driver Overhead

State Architecture: Motivation
• Design priorities are flexibility, high performance, and

maintainability (slightly different from a game engine; must be
able to gracefully cope with unexpected situations)

• Previous architecture based on managing discrete OpenGL state
changes incrementally

• New State object represents comprehensive state for rendering
a single object – including the geometry

• Important for the middleware architecture to match the
underlying underlying GAPI architecture

State Architecture: Block Diagram

Pass

Light

Xform

Geom

Frame

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Shadow Maps
Light

Parameters

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Shape Textures
Material

Parameters
Texture

Environment

Buffer Control,
Blending, etc.

Model
Transformation

VBO Bind Points

View & Proj
Matrices

Light types,
Lighting Model

Pgon Offset, Line
Style, Tex Params

State Architecture: Frame State

Pass

Xform

Geom

Frame

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Light Shadow Maps
Light

Parameters

Shape Textures
Material

Parameters
Texture

Environment

Buffer Control,
Blending, etc.

Model
Transformation

VBO Bind Points

View & Proj
Matrices

Light types,
Lighting Model

Pgon Offset, Line
Style, Tex Params

State Architecture: Pass State

Pass

Xform

Geom

Frame

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Light Shadow Maps
Light

Parameters

Shape Textures
Material

Parameters
Texture

Environment

Buffer Control,
Blending, etc.

Model
Transformation

VBO Bind Points

View & Proj
Matrices

Light types,
Lighting Model

Pgon Offset, Line
Style, Tex Params

State Architecture: Light State

Pass

Xform

Geom

Frame

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Light Shadow Maps
Light

Parameters

Textures
Material

Parameters
Texture

Environment
Shape

Buffer Control,
Blending, etc.

Model
Transformation

VBO Bind Points

View & Proj
Matrices

Light types,
Lighting Model

Pgon Offset, Line
Style, Tex Params

State Architecture: Shape State

Pass

Xform

Geom

Frame

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Light Shadow Maps
Light

Parameters

Textures
Material

Parameters
Texture

Environment
Shape

Buffer Control,
Blending, etc.

Model
Transformation

VBO Bind Points

View & Proj
Matrices

Light types,
Lighting Model

Pgon Offset, Line
Style, Tex Params

State Architecture: Xform State

Pass

Xform

Geom

Frame

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Light Shadow Maps
Light

Parameters

Shape Textures
Material

Parameters
Texture

Environment

Buffer Control,
Blending, etc.

Model
Transformation

VBO Bind Points

View & Proj
Matrices

Light types,
Lighting Model

Pgon Offset, Line
Style, Tex Params

State Architecture: Geom State

Pass
Buffer Control,
Blending, etc.

Xform
Model

Transformation

Geom VBO Bind Points

Frame
View & Proj

Matrices

Host State GPU State

Index VBO

(UBOs, FBOs, VBOs, TexObjs)

Vertex VBO

Transparency FBO

View/Proj matrices,
ModelViewProj Matrices

Light
Light types,

Lighting Model
Shadow Maps

Light
Parameters

Shape
Pgon Offset, Line
Style, Tex Params Textures

Material
Parameters

Texture
Environment

Optimization: Strategy
• Reduce CPU Overhead

• Minimize OpenGL Calls

• Minimize State Updates

• Increase GPU Performance

• Use faster APIs

• Prevent Stalls

Areas of Exploration

• Index | Display Lists | VBOS

• Fixed Function Pipeline | Shaders

• State Calls | Uniforms | Uniform
Buffer Objects

• DrawRangeElements |
MultiDrawElementsIndirect |
CommandList

• Buffers | Persistently Mapped |
Bindless

Optimization: Rendering Pipeline

• Generate Render List

• Use CPU or GPU

• Iterate over Render List

• Apply State

• Render Geometry

Shape Light Xform Geom

Shape Light Xform Geom

apply(Engine)

apply(Frame)

while(item)

 apply(Light)

 apply(Shape)

 apply(Xform)

 render(Geom)

R
e

n
d

e
r

Optimization: Test Procedure
• Load model into test

application

• Rotate model until stable
state is reach

• Capture statistics for rotating
the model 360 degree in 1
degree increments

• 16 Million Triangles

• 12,699 Occurrences

Optimization: Vertex Data Layout

• How are your vertices stored relative to how they are referenced?

• Collocation: Sorts along random axis in order to eliminate duplicated vertices

• Simple Fix: Sort in order of first reference

• Advanced Fix: Vertex Cache Optimization (e.g. Tipsify, …)

Quadro 4500

Optimization: Vertex Buffer Objects

• Upload vertex data to buffer on the GPU and render straight from
the buffer

• Data on GPU does not have to match Data on CPU

• Similar performance as GL Display Lists

Render Time FireGL 7350 (Relative to Index)

Poor Performance on certain GPUs
• glMultiDrawArrays

Optimum Performance
• glDrawRangeElements - Triangles
• glDrawRangeElements - PrimRestart

15x | 2.6x

Performance

K2100M
IDX
VBO
VCO

65 fps
13 fps
25 fps

Optimization: Unified Vertex Buffer Objects

• Create VBOs of a fixed size and populate sections with data from
multiple render items

• Significantly reduce the number of vertex bind calls

• Increase cache coherency of data on the GPU, especially during render

Performance

VBO

UVBO 155 fps

122 fps
27%

Optimization: State Sorting

• Significant amount of GL calls can be
attributed to applying the state updates

• Sorting the state and only applying if it changes
allows for the number of state update to be
reduced

apply(Engine)
apply(Frame)

while(item) {

 if (bNewL) apply(Light)
 if (bNewS) apply(Shape)
 if (bNewX) apply(Xform)

 bind(geom)
 render(Geom)

}

R
e

n
d

e
r

Performance

Unsorted

Sorted 161.43 fps

120.40 fps
23%

Optimization: Uniform Buffer Objects

• Still a significant amount of state to be set

• Shaders complicate matters as they require state
passed in through uniforms

• Uniform buffer objects allows for large blocks of
state to be uploaded to the GPU and then set
using a single bind call

Performance

Uniforms

UBO 189.47 fps

16.49 fps
11.5x

Optimization: Xform Batching

• GPU stalls due to data transfer can significantly impeded render
performance

GPU Transfers as a result of xform updates

Increased concurrency as the result of batching

Optimization: MultiDrawElementsIndirect

• Allows for multiple draw calls to be combined into a single call

• Offloads traditionally CPU work to the GPU

• Biggest benefit will be seen by application that are CPU bound and
render lots of small shapes

Optimization: MultiDrawElementsIndirect

• Verify your application is a good fit

• Use system timers to calculate system time

• Use glQuery objects to measure GPU time

Is your application
CPU bound?

Are there a significant
number of draw calls?

Optimization: MultiDrawElementIndirect

• Define MDEI Buffers per State • Pass xforms in through texture buffer

• Use the glBaseInstanceID to specify Matrix

• Use an additional vertex attribute with
glVertexDivisor for better performance

• MDEI and Index Buffer created once and then
bound per each state transition

• Xforms buffer initialized with other buffers,
however the matrices are recalculated before
binding

• Model*View

• Model*View*Projection

Optimization: MultiDrawElementIndirect

• Define MDEI Buffers per State

• Results in worse performance

Performance

Orig

MDEI | State 116.32

135.64

Draw calls are
significantly reduced

MDEI generation is
expensive on both
CPU and GPU

17%

Optimization: MultiDrawElementsIndirect

• MDEI Buffer Per Render List

Performance

Default

MDEI |State 116.39

135.64

MDEI | RL 167.44

Significantly improves
time to render on CPU

23%

Optimization: Summary

Discussed

• Vertex Data Layout

• VBOs | Unified VBOs

• UBOs

• Batching of Data Updates

• MDEI

Future

• Bindless

• Culling

• CommandLists

Questions:

Jeremy Bennett [Senior Software Engineer, Siemens PLM Software]

jeremy.bennett@siemens.com

Michael Carter [Senior Key Expert, Siemens PLM Software]

michael.b.carter@siemens.com

Please complete the Presenter Evaluation sent to you by email or through
the GTC Mobile App. Your feedback is important!

