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Nonsmooth Contact Dynamics 
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Nonsmooth Dynamics 
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Nonsmooth Dynamics: Frictionless Case 

The Signorini Conditions: 

 

  Every relative velocity should be zero 
  or separating 

  Every contact impulse should be non-
  attractive 

 

  

No impulse at separating contacts: 

Antonio Signorini 
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Nonsmooth Dynamics: Frictionless Case 

The Signorini Conditions: 

 

 

 

This is a compact way to write the three conditions in 
one line of math 
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Tonge, 2012 

Antonio Signorini 



Nonsmooth Dynamics: Frictionless Case 

The final model can be expressed by these equations: 
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Nonsmooth Dynamics: Friction Case 

Stewart and Trinkle, 1996 
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Nonsmooth Dynamics: Friction Case 

Anitescu and Hart, 2004 
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Nonsmooth Dynamics: The Cone Complementarity Problem (CCP) 

where 
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Nonsmooth Dynamics: The Quadratic Programming Angle… 

• The CCP captures the first-order optimality condition for a quadratic optimization problem 
with conic constraints: 

 

 

 

 

• Notation used: 
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Quadratic Optimization w/ Conic 
Constraints (CCQO’s) 
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CCQO’s: First Order Methods 
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CCQO’s: Second Order Methods 
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• Original problem: 

 

 

• Reformulation via an indicator function: 

 

 

 

 

• Approximation via logarithmic barrier: 

where otherwise 



Interior Point 
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Numerical Results 
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Results: Physical Model 

• Several numerical experiments were performed using a model of spheres falling 
into a bucket 
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Results: Comparison of Solver Results 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD PDIP 
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Results: Comparison of Solver Iterations 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD PDIP 
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Results: Comparison of Solver Execution Time 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD 

PDIP 

3/19/2015 University of Wisconsin 20 



Time [s]
0 0.5 1 1.5 2 2.5 3 3.5

It
e

ra
ti
o
n
s
 [
#

]

0

50

100

150

200

250

300

350

400

450

500

1e-1
1e-2
1e-3
1e-4
1e-5

Results: Comparison of Solvers 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD PDIP 
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Preconditioning with SPIKE 
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The SPIKE algorithm 

• SPIKE: a divide-and-conquer approach to solving banded dense systems. 

• Proposed by A. H. Sameh and D. J. Kuck in 1978. 
(see also E. Polizzi and A. H. Sameh, Parallel Computing 32(2), 2006) 

• Basic idea: 
• Partition the matrix A. 

• Factorize  A to isolate independent blocks. 

• Solve a reduced system to account for coupling information. 

• Recover solution of original system. 

• SPIKE comes in two main flavors: 
• Full-SPIKE: recursively solve an exact reduced system (direct solver for banded matrices). 

• Truncated-SPIKE: solve an approximate reduced system in one step (needs iterative refinement). 
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SPIKE: algorithmic details 
Partitioning and Factorization 

• Partition and factorize A into block diagonal matrix D and spike matrix S. 
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SPIKE: algorithmic details 
Solving Dg=b 

• Reduced to solving P independent (banded dense) linear systems. 

• Map these systems to P blocks on GPU. 

• Apply classical LU (or UL) methods to each sub-system. 
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SPIKE factorization in plain math 

• The right (Vi) and left (Wi) spike blocks can be obtained through the solution of P 
independent multiple-RHS banded linear systems.  
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SPIKE: algorithmic details 
Solving Sx=g (full SPIKE) 

• Combine all coupling blocks into a reduced matrix 

• (Recursively) solve the reduced system  

• Recover solution from reduced solution 

 

Combine 
coupling blocks 
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SPIKE: algorithmic details 
Solving Sx=g (truncated SPIKE) 

• Justified for diagonally dominant systems only. 

• All spike blocks W and V are approximated by their top and bottom parts, respectively. 

• Results in a decoupling of the reduced matrix into (P-1) small independent systems (2K x 2K). 

Truncate  
spike blocks 
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Truncated SPIKE as a preconditioner 

• Fundamental idea: 
• Reorder a sparse matrix to obtain a banded matrix with as “heavy” a diagonal as possible. 

• Drop small entries far from the main diagonal in an attempt to produce an even narrower band. 

• Use truncated SPIKE on resulting banded matrix. 

• Sparse matrix reordering 
• Reordering is critical 

• Non-zeroes can spread while we prefer them to gather around diagonals. 

• Both truncated SPIKE and BiCGStab(2) prefer diagonal elements with large absolute values. 

• Reordering strategies 

• Use row permutations to maximize product of absolute diagonal values:  A  QA 

• Apply symmetric RCM for bandwidth reduction:  QA + AT QT  P ( QA + AT QT ) PT 
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Numerical Results 
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Results: Preconditioned PDIP (P-PDIP) 

• Adding preconditioning to the search direction computation drastically improves 
computation time 
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Results: Effect of Problem Size 

• A series of simulations on filling models of increasing size were performed to 
estimate how the solver performance scales with problem dimension 
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Conclusions & Future Work 
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Conclusions 

• Interior point methods require much less iterations than gradient 
descent methods, but each iteration is much more computationally 
expensive 

• Preconditioning is responsible for an four-fold reduction in run times 
when simulating nonsmooth contact problems  

• Although used with the nonsmooth dynamics, this speed-up is 
independent of the specific formalism adopted for the formulation of 
the equations of motion 
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Future Work 

• Investigate improvements to the interior point algorithm 

• Investigate SPIKE update strategies and preconditioner re-use 

• Investigate the effectiveness of spectral reordering methods 

• Understand and gauge the software implementation effort and 
simulation efficiency trade-offs related to moving from the GPU to 
parallel multi-core CPU architectures 
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Thank you. 

• Source available for download under BSD-3 
http://spikegpu.sbel.org/ 

• For all of our animations, please visit 
https://vimeo.com/uwsbel 

• For more information about the Simulation-
Based Engineering Laboratory, please visit 
http://sbel.wisc.edu/ 
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Thank You. 

melanz@wisc.edu   

Simulation Based Engineering Lab 

Wisconsin Applied Computing Center 
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