
GPU TECHNOLOGY CONFERENCE: 
 

S5400: Chrono::SPIKE – A Nonsmooth Contact 
Dynamics Framework on the GPU 

Daniel Melanz, Luning Fang, Ang Li, Hammad Mazhar, Radu Serban, Dan Negrut 
 

Simulation-Based Engineering Laboratory 
University of Wisconsin - Madison 

 



Overview 

1) Nonsmooth Contact Dynamics 

2) Quadratic Optimization w/ Conic Constraints 

3) Preconditioning with SPIKE 

4) Numerical Results 

5) Conclusions & Future Work 

3/19/2015 University of Wisconsin 2 



Nonsmooth Contact Dynamics 

3/19/2015 University of Wisconsin 3 



Nonsmooth Dynamics 

3/19/2015 University of Wisconsin 4 



Nonsmooth Dynamics: Frictionless Case 

The Signorini Conditions: 

 

  Every relative velocity should be zero 
  or separating 

  Every contact impulse should be non-
  attractive 

 

  

No impulse at separating contacts: 

Antonio Signorini 

3/19/2015 University of Wisconsin 5 

Tonge, 2012 



Nonsmooth Dynamics: Frictionless Case 

The Signorini Conditions: 

 

 

 

This is a compact way to write the three conditions in 
one line of math 

 

  

3/19/2015 University of Wisconsin 6 

Tonge, 2012 

Antonio Signorini 



Nonsmooth Dynamics: Frictionless Case 

The final model can be expressed by these equations: 

 

  

3/19/2015 University of Wisconsin 7 

Tonge, 2012 



Nonsmooth Dynamics: Friction Case 

Stewart and Trinkle, 1996 

3/19/2015 University of Wisconsin 8 



Nonsmooth Dynamics: Friction Case 

Anitescu and Hart, 2004 

3/19/2015 University of Wisconsin 9 



Nonsmooth Dynamics: The Cone Complementarity Problem (CCP) 

where 

3/19/2015 University of Wisconsin 10 



Nonsmooth Dynamics: The Quadratic Programming Angle… 

• The CCP captures the first-order optimality condition for a quadratic optimization problem 
with conic constraints: 

 

 

 

 

• Notation used: 

 

3/19/2015 University of Wisconsin 11 



Quadratic Optimization w/ Conic 
Constraints (CCQO’s) 

3/19/2015 University of Wisconsin 12 



CCQO’s: First Order Methods 

3/18/2015 13 

 



CCQO’s: Second Order Methods 

3/18/2015 14 

• Original problem: 

 

 

• Reformulation via an indicator function: 

 

 

 

 

• Approximation via logarithmic barrier: 

where otherwise 



Interior Point 

3/18/2015 15 



Numerical Results 

3/19/2015 University of Wisconsin 16 



Results: Physical Model 

• Several numerical experiments were performed using a model of spheres falling 
into a bucket 

3/19/2015 University of Wisconsin 17 



Time [s]
2 2.2 2.4 2.6 2.8 3 3.2

W
e
ig

h
t 
[N

]
-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

1e-1
1e-2
1e-3
1e-4
1e-5

Time [s]
2 2.2 2.4 2.6 2.8 3 3.2

W
e
ig

h
t 
[N

]

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

1e-1
1e-2
1e-3
1e-4
1e-5

Results: Comparison of Solver Results 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD PDIP 

3/19/2015 University of Wisconsin 18 



Time [s]
0 0.5 1 1.5 2 2.5 3 3.5

It
e

ra
ti
o
n
s
 [
#

]

0

50

100

150

200

250

300

350

400

450

500

1e-1
1e-2
1e-3
1e-4
1e-5

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5

It
e

ra
ti
o
n
s
 [
#

]

0

10

20

30

40

50

60

1e-1
1e-2
1e-3
1e-4
1e-5

Results: Comparison of Solver Iterations 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD PDIP 

3/19/2015 University of Wisconsin 19 



Results: Comparison of Solver Execution Time 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD 

PDIP 

3/19/2015 University of Wisconsin 20 



Time [s]
0 0.5 1 1.5 2 2.5 3 3.5

It
e

ra
ti
o
n
s
 [
#

]

0

50

100

150

200

250

300

350

400

450

500

1e-1
1e-2
1e-3
1e-4
1e-5

Results: Comparison of Solvers 

• Simulations of the filling simulation were performed for 3 seconds with a step size, 
h=10-3 seconds using the APGD and PDIP solvers 

APGD PDIP 

3/19/2015 University of Wisconsin 21 



Preconditioning with SPIKE 

3/19/2015 University of Wisconsin 22 



The SPIKE algorithm 

• SPIKE: a divide-and-conquer approach to solving banded dense systems. 

• Proposed by A. H. Sameh and D. J. Kuck in 1978. 
(see also E. Polizzi and A. H. Sameh, Parallel Computing 32(2), 2006) 

• Basic idea: 
• Partition the matrix A. 

• Factorize  A to isolate independent blocks. 

• Solve a reduced system to account for coupling information. 

• Recover solution of original system. 

• SPIKE comes in two main flavors: 
• Full-SPIKE: recursively solve an exact reduced system (direct solver for banded matrices). 

• Truncated-SPIKE: solve an approximate reduced system in one step (needs iterative refinement). 

3/19/2015 University of Wisconsin 23 



SPIKE: algorithmic details 
Partitioning and Factorization 

• Partition and factorize A into block diagonal matrix D and spike matrix S. 
 

3/19/2015 University of Wisconsin 24 



SPIKE: algorithmic details 
Solving Dg=b 

• Reduced to solving P independent (banded dense) linear systems. 

• Map these systems to P blocks on GPU. 

• Apply classical LU (or UL) methods to each sub-system. 

3/19/2015 University of Wisconsin 25 



SPIKE factorization in plain math 

• The right (Vi) and left (Wi) spike blocks can be obtained through the solution of P 
independent multiple-RHS banded linear systems.  

3/19/2015 University of Wisconsin 26 



SPIKE: algorithmic details 
Solving Sx=g (full SPIKE) 

• Combine all coupling blocks into a reduced matrix 

• (Recursively) solve the reduced system  

• Recover solution from reduced solution 

 

Combine 
coupling blocks 

3/19/2015 University of Wisconsin 27 



SPIKE: algorithmic details 
Solving Sx=g (truncated SPIKE) 

• Justified for diagonally dominant systems only. 

• All spike blocks W and V are approximated by their top and bottom parts, respectively. 

• Results in a decoupling of the reduced matrix into (P-1) small independent systems (2K x 2K). 

Truncate  
spike blocks 

3/19/2015 University of Wisconsin 28 



Truncated SPIKE as a preconditioner 

• Fundamental idea: 
• Reorder a sparse matrix to obtain a banded matrix with as “heavy” a diagonal as possible. 

• Drop small entries far from the main diagonal in an attempt to produce an even narrower band. 

• Use truncated SPIKE on resulting banded matrix. 

• Sparse matrix reordering 
• Reordering is critical 

• Non-zeroes can spread while we prefer them to gather around diagonals. 

• Both truncated SPIKE and BiCGStab(2) prefer diagonal elements with large absolute values. 

• Reordering strategies 

• Use row permutations to maximize product of absolute diagonal values:  A  QA 

• Apply symmetric RCM for bandwidth reduction:  QA + AT QT  P ( QA + AT QT ) PT 

3/19/2015 University of Wisconsin 29 



Numerical Results 

3/19/2015 University of Wisconsin 30 



Results: Preconditioned PDIP (P-PDIP) 

• Adding preconditioning to the search direction computation drastically improves 
computation time 

3/19/2015 University of Wisconsin 31 



Results: Effect of Problem Size 

• A series of simulations on filling models of increasing size were performed to 
estimate how the solver performance scales with problem dimension 

3/19/2015 University of Wisconsin 32 



Conclusions & Future Work 

3/19/2015 University of Wisconsin 33 



Conclusions 

• Interior point methods require much less iterations than gradient 
descent methods, but each iteration is much more computationally 
expensive 

• Preconditioning is responsible for an four-fold reduction in run times 
when simulating nonsmooth contact problems  

• Although used with the nonsmooth dynamics, this speed-up is 
independent of the specific formalism adopted for the formulation of 
the equations of motion 

3/19/2015 University of Wisconsin 34 



Future Work 

• Investigate improvements to the interior point algorithm 

• Investigate SPIKE update strategies and preconditioner re-use 

• Investigate the effectiveness of spectral reordering methods 

• Understand and gauge the software implementation effort and 
simulation efficiency trade-offs related to moving from the GPU to 
parallel multi-core CPU architectures 

3/19/2015 University of Wisconsin 35 



Thank you. 

• Source available for download under BSD-3 
http://spikegpu.sbel.org/ 

• For all of our animations, please visit 
https://vimeo.com/uwsbel 

• For more information about the Simulation-
Based Engineering Laboratory, please visit 
http://sbel.wisc.edu/ 

 

3/19/2015 University of Wisconsin 36 

http://spikegpu.sbel.org/
http://spikegpu.sbel.org/
https://vimeo.com/uwsbel
https://vimeo.com/uwsbel


Thank You. 

melanz@wisc.edu   

Simulation Based Engineering Lab 

Wisconsin Applied Computing Center 

3/19/2015 University of Wisconsin 37 

mailto:negrut@wisc.edu

