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Nonsmooth Dynamics: Frictionless Case

The Signorini Conditions:

0<v. Every relative velocity should be zero
or separating

- Every contact impulse should be non-
0<A attractive

No impulse at separating contacts:  (v,,);=0 or A=0

Antonio Signorini

Tonge, 2012
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Nonsmooth Dynamics: Frictionless Case

The Signorini Conditions:
0<vy, L 0ZA

This is a compact way to write the three conditions in
one line of math

Antonio Signorini

Tonge, 2012

3/19/2015 University of Wisconsin 6




/I SBEL

Wisconsin Applied Computing Center

Nonsmooth Dynamics: Frictionless Case

The final model can be expressed by these equations:

Mx=J'A+f
X=V

0<A1L0<Jv

Tonge, 2012
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Nonsmooth Dynamics: Friction Case

Generalized Positions ——

Generalized Mass Matrix

Kinematic Differential Equations - »

Force Balance Equations —> M(q)v=1(t,q,v) — g;lr (q,0)A

Holonomic Kinematic Constraints >  g(q,7)=0

Contact Complementarity Conditions >

Al

Coulomb Friction Model —— (

u?

W Gap Function, for Contact

Friction Components, for Contact

7.)=/ argmin

Velocity Transformation Matrix

Generalized Velocities
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Frictional
q=T(q)v Reaction Contact Force
Force r
——— N

~

i=]

Applied Force

i ~i
0<®'(q,r) L 7,20
P i T
[ argmin (7, v'D, +7,v' D)
N VARV, M

[{ Pt
1

[ {2
1

+ 2.7, + 7,0, +7,D,)

Normal Force, for Contact “1”
i=12,...,.N

c

Total Number
of Contacts

Friction Dissipation Energy

Stewart and Trinkle, 1996
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Nonsmooth Dynamics: Friction Case

Time Step Index Time Step Size
Generalized Posmons Veloc1ty Transformation Matrix

Generalized Speeds

‘ Kinematic Differential Equations I ” D — ”) + hT(q(”) (+D) Reactllon Frictif)nal Contact
Impulse Reaction Impulses
‘ Force Balance Equations I » M (V(M) - v(”) =ht (", q",v") - qu q”, O\ + Z(y;D; +7.D, +7.D.)
T G i=
| Applied Force :
| Holonomic Kinematic Constraints }—» - o(q"”, )+ quv(! g = 0 _ __ Stabilization Terms
| Contact Complementarity Conditions I » 0< ZCI)" q,)+DVEY 1 >0 i=12,...,N,
-
i . i Texi —i Texi Total Number
| Coulomb Friction Model I » (y,7.)= argmin  (7,v'D, +7.v'D.) of Conl’iacts
Ky (7)) +(7)

Anitescu and Hart, 2004
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Nonsmooth Dynamics: The Cone Complementarity Problem (CCP)

> 3

Find~!"™, fori=1,...,N.
such that ¥; 3 4\ 1 — (N + 7). € X3

T, =A{[r,y, ::’T c R \/-y2 + 22 < p;r}
T2 = {[r.v. ::T e R3|le < —pin/y? + 22}

where
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Nonsmooth Dynamics: The Quadratic Programming Angle...

« The CCP captures the first-order optimality condition for a quadratic optimization problem
with conic constraints:

1
2
subjecttoy, € T, fort=1.2,... N,

ming (v) = =v' Ny +r'~

« Notation used:
N = D'M'D

T
T = b—|_DTM_1k: ’7 — [7?7§7\C] -~ R-ﬂ!\c
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Quadratic Optimization w/ Conic
Constraints (CCQOQO’s)
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CCQO’s: First Order Methods

ALGORITHM JACOBI(IN, 7, 7. N,p0zs Vo)

(1)
(2)
3)
(4)
&)
(6)
(7)
(8)

for kL :=0to N,,..
Yoern = e (v —wB (N + 7))
Y1) = M) T (L= A v
F=r (V)
if r <7
break
endfor

return Value at time step #/ 1), y(F1) .=~ )
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CCQO’s: Second Order Methods

e Original problem: minimize fo(x)
subject to f?( ) <0, =1

e Reformulation via an indicator function:

minimize  fo(z) + >, 1 7))

subject to AJ, — b
where [ _(u) =0if u <0, I_(u) = 0o otherwise

« Approximation via logarithmic barrier:

minimize  fo(z) — (1/t) > log(—fi(z))

subject to Axr =0

- oW

10
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Interior Point

V2 fo (2 ZAV%

—diag (N)Vf (x)

ALGORITHM PD-IP(fy, f1, ...,

(D)
(2)
3)
(4)
(5)
(6)
(7)

()

while ||, (., A) [|o > €

pm

Compute t = 7

fs it > 1, €)
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Compute search direction [Az” AX']T

Compute step length s > 0 via line search

Update: © = x + sAx, A = A + sAAX

endwhile

return Solution * = &, A" =

Vf(x)
~diag (f (z))

Ax
AN

A

Vo (x) + VE ()"
_—dia.g (A) f(x) —
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Numerical Results

/I SBEL

Wisconsin Applied Computing Center

3/19/2015

University of Wisconsin

16




Results: Physical Model

» Several numerical experiments were performed using a model of spheres falling

into a bucket
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Results: Comparison of Solver Results

« Simulations of the filling simulation were performed for 3 seconds with a step size,
h=1073seconds using the APGD and PDIP solvers
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Results: Comparison of Solver Iterations
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« Simulations of the filling simulation were performed for 3 seconds with a step size,

h=1073 seconds using the APGD and PDIP solvers
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Results: Comparison of Solver Execution Time
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« Simulations of the filling simulation were performed for 3 seconds with a step size,

h=1073 seconds using the APGD and PDIP solvers

X

PDIP

APGD
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Results: Comparison of Solvers

« Simulations of the filling simulation were performed for 3 seconds with a step size,
h=1073seconds using the APGD and PDIP solvers
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The SPIKE algorithm

 SPIKE: a divide-and-conquer approach to solving banded dense systems.

« Proposed by A. H. Sameh and D. J. Kuck in 1978.
(see also E. Polizzi and A. H. Sameh, Parallel Computing 32(2), 2006)

e Basicidea:
e Partition the matrix A.

« Factorize A toisolate independent blocks.
« Solve a reduced system to account for coupling information.
« Recover solution of original system.

« SPIKE comes in two main flavors:
« Full-SPIKE: recursively solve an exact reduced system (direct solver for banded matrices).

 Truncated-SPIKE: solve an approximate reduced system in one step (needs iterative refinement).
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SPIKE: algorithmic details

Partitioning and Factorization
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« Partition and factorize A into block diagonal matrix D and spike matrix S.

Ax=b <« {IS)E:;
A7 B, Aq
N
N
Cs \Q B, \%
N
NG X
Cs | Br_1
N
N
Cr [NAD \A\p
A D

| Vi
W, I Vs
W3 Vp_
Wp I
S
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SPIKE: algorithmic details
Solving Dg=b

« Reduced to solving Pindependent (banded dense) linear systems.

« Map these systems to P blocks on GPU.
 Apply classical LU (or UL) methods to each sub-system.

Al g1

\A\P g7

D g

\% 2!
X -
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SPIKE factorization in plain math
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« Theright (V) and left (W.) spike blocks can be obtained through the solution of P

independent multiple-RHS banded linear systemes.

0
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SPIKE: algorithmic details
Solving Sx=g (full SPIKE)

« Combine all coupling blocks into a reduced matrix
» (Recursively) solve the reduced system

« Recover solution from reduced solution

| Combine
WQ‘ I ‘Vg coupling blocks

| = | D

z

?<—
i
=i
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SPIKE: algorithmic details
Solving Sx=g (truncated SPIKE)

» Justified for diagonally dominant systems only.
o All spike blocks W and V are approximated by their top and bottom parts, respectively.

» Results in a decoupling of the reduced matrix into (P-1) small independent systems (2K x 2K).

I vV, I ng)
Truncate
Wa 1 Vo spike blocks w | 1 v
| >
Ws Vi W;(%t) ng) 1
Wp I Wg) I
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Truncated SPIKE as a preconditioner

« Fundamental idea:
« Reorder a sparse matrix to obtain a banded matrix with as “heavy” a diagonal as possible.
 Drop small entries far from the main diagonal in an attempt to produce an even narrower band.

« Use truncated SPIKE on resulting banded matrix.

 Sparse matrix reordering
 Reordering is critical

« Non-zeroes can spread while we prefer them to gather around diagonals.

 Both truncated SPIKE and BiCGStab(2) prefer diagonal elements with large absolute values.
 Reordering strategies

 Use row permutations to maximize product of absolute diagonal values: A — QA

 Apply symmetric RCM for bandwidth reduction: QA + AT QT > P ( QA + AT Q1) PT
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Numerical Results
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Results: Preconditioned PDIP (P-PDIP)

« Adding preconditioning to the search direction computation drastically improves
computation time

X

A —
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Results: Effect of Problem Size

« A series of simulations on filling models of increasing size were performed to
estimate how the solver performance scales with problem dimension

X
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Conclusions & Future Work
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Conclusions

e Interior point methods require much less iterations than gradient
descent methods, but each iteration is much more computationally
expensive

« Preconditioning is responsible for an four-fold reduction in run times
when simulating nonsmooth contact problems

e Although used with the nonsmooth dynamics, this speed-up is
independent of the specific formalism adopted for the formulation of
the equations of motion
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Future Work

e Investigate improvements to the interior point algorithm

e Investigate SPIKE update strategies and preconditioner re-use

e Investigate the effectiveness of spectral reordering methods

« Understand and gauge the software implementation effort and
simulation efficiency trade-offs related to moving from the GPU to
parallel multi-core CPU architectures
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Thank you.

 Source available for download under BSD-3
« For all of our animations, please visit

« For more information about the Simulation-
Based Engineering Laboratory, please visit
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http://spikegpu.sbel.org/
http://spikegpu.sbel.org/
https://vimeo.com/uwsbel
https://vimeo.com/uwsbel
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