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Correctness of Concurrent Systems

e Distributed, concurrent systems common-place, but very difficult to
develop

* network applications, communication protocols, multi-threaded
applications

e Systems may contain bugs such as deadlocks and livelocks
* Deadlock: computation not finished, but system cannot progress
* Livelock: system repeats computation steps without progressing

* Given a model of a concurrent system, these, and other functional
properties can be checked using model checking

e All states in which the system (design) can end up are inspected
* Itis automatic
* Provides useful feedback (counter-examples)



TU /e s
Model Checking

Exhaustively interpret all potential functional behaviour of a model of a
(concurrent) system, and automatically check whether that behaviour
meets a given specification Safety:

 Deadlock freedom “two processes can never simultaneously
access the same critical section”

 Race freedom X
iveness:

“When a message has been sent, it is
eventually received”

e ... safety and liveness properties

Formal models describe hardware or software designs, requirements
specified using temporal logics (CTL, LTL, mu-calculus)

2007: pioneers E.M. Clarke, J. Sifakis,
E.A. Emerson (early 80’s) receive Turing
award
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Model Checking

(Deadlock freedom as mu-calculus formula)
(Dining Philosophers Problem)

[True] <True> True

State Space is a map showing all

possible system states and
transitions between them

Dining Philosophers
System can deadlock!

(Produced with the LTSview tool
of the mCRL2 toolset)
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Model Checking Success Stories

Deadlocks detected in airline reservation systems
Modern e-commerce protocols have been verified

Studies of IEEE standards for in-house communication of appliances has led
to significant improvements

Errors found in Deep Space 1 spacecraft controller model ("98)

TU/e with mCRL2: Control software of the Compact Muon Solenoid
Experiment at the Large Hadron Collider: 27.500 finite state machines,
livelock and reachability bugs found
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Drawback: state space explosion
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13 traffic lights
14 traffic lights
15 traffic lights
16 traffic lights
17 traffic lights

—

Drawback: state space explosion

1.59 million states
4.78 million states
14.35 million states
43.05 million states
129.14 million states

Linear growth of model leads to exponential growth of state space!

Current state-of-the-art (explicit-state) model
checking: reason about ~ 3 billion states




Technische Universiteit
I U e Eindhoven
Universaty of Technology

e Common operations in model checking:
* Generating state spaces (+ on-the-fly checking properties)

* Analysing the structure of states spaces (e.g., strongly connected
components, relevant for more complex properties)

 Comparing states and transitions
* Minimising state spaces for more efficient analysis

e Can GPUs be used for this?

* Yes, but far from trivially
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On-The-Fly State Space Exploration State Space Structural Analysis Probability Computations

Perform numerical computations for probabilistic model checking [1, 4]
Needed to check if a probabilistic property holds in a discrete or continuous time Markov Chain

Construct a state space, given a model of a concurrent system [3] Decompose explicit graph into gly C C
Model = set of interacting finite-state Labelled Transition Systems &

Decompose graph of Markov Decision Process into Maximal End Components [5,
P yap Y el . ! i B Bl Solving systems of linear equations and performing matrix-vector multiplication

New hash-table design for GPUs, with fine-grained parallelism
Parallel matrix-vector multiplication used in Jacobi method for solving equation systems

Elements are placed in buckets using warp-the-line technique RO -
B q 22p 9 Dy based on For Breadth-First Search
Novel combined forward/backward thread kernel with trimming of trivial SCCs i . . .
Parallel ter significant

Threads work in groups to generate state successors
Baglolsh ot sigtorievel Check equivalence of states for state space comparison and minimisation [2]
Efficiently checks strong and branching bisimilarity of states

Fast checking if next iteration is needed

Novel ing of input memory access by threads
Faster reading of input reduces multiplication run time up to four times

Block-local shared memory used for state caches
Local duplicate detection reduces global hash table access i frarer ot y partition
Bisimilar states end up in the same block in final partition

States / iti are grouped in of 16 and 32 states

Work forwarding per block from one search iteration to the next
Coincides with a half and a full warp of threads

Speeds up fetching new work for the next iteration Both operations use a new pivot selection procedure for each region / block
Uses hash table for enforced data races to select representatives of the region / block
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10-100x speedup 10-79x speedup 20-35x speedup

References Tools available at http://www.win.tue.nl/~awijs

[1] Parallel Probabilistic Model Checking on General Purpose Graphics Processors
D. Bosnatki, S. Edelkamp, D. Sulewski, and A.J. Wijs
International Journal on Software Tools for Technology Transfer 13(1) 21-35 (2011)
[2] GPU Accelerated Strong and Branching Bisimilarity Checking
J. Wijs
in Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’15), accepted for publication (2015)
[3] GPUexplore: Many-Core On-The-Fly State Space Exploration Using GPUs
A.J. Wijs and D. Bo$nacki
in Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14), volume 8413 of LNCS, pp. 233-247 (2014)
[4] Improving GPU Sparse Matrix-Vector Multiplication for Probabilistic Model Checking s NVIDIA.
A.J. Wijs and D. Bo$nacki
in Proceedings of the 19th International SPIN Workshop on Model Checking of Software (SPIN'12), volume 7385 of LNCS, pp. 98-116 (2012)
[5] GPU-Based Graph Decomposition into Strongly Connected and Maximal End Components
A.J. Wijs, J.-P. Katoen, and D. Bosnacki
in Proceedings of the 26th International Conference on Computer Aided Verification (CAV'14), volume 8559 of LNCS, pp. 309-325 (2014)

The central image in “State Space Structural Analysis” shows the state space of a Bounded Retransmission Protocol model, and was created using the LTSview tool of the mCRL2 toolset (http:/www.mcrl2.org)
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Construct a state space, given a model of a concurrent system [3]
Model = set of interacting finite-state Labelled Transition Systems

Decompose explicit graph into gly Ci Ci
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Decompose graph of Markov Decision Process into Maximal End Components [5]

New hash-table design for GPUs, with fine-grained parallelism
Elements are placed in buckets using warp-the-line technique

D itioning based on For Breadth-First Search

. Novel combined forward/backward thread kernel with trimming of trivial SCCs
Threads work in groups to generate state successors

Parallelism at state-level
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Probability Computations

Perform numerical computations for probabilistic model checking [1, 4]
Needed to check if a probabilistic property holds in a discrete or continuous time Markov Chain

Solving systems of linear equations and performing matrix-vector multiplication
Parallel matrix-vector multiplication used in Jacobi method for solving equation systems

Parallel terminati i i significant
Fast checking if next iteration is needed

Novel ing of input memory access by threads
Faster reading of input reduces multiplication run time up to four times

States / iti are grouped in of 16 and 32 states
Coincides with a half and a full warp of threads
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State Space Generation

e Graph traversal is a very important operation
 Much work on GPU graph traversal (also at GTC 2015)

 However, for model checking, many approaches are not suitable, since the
graph (state space) is not known a priori

e Number of states and transitions not known

e Traffic light system with a pedestrian process:
delay

stop Cross

delay delay

approach

Cross| |wait

* Key aspects:

* Next-state computation (compute new state vectors)
* Keeping track of which state vectors have been visited / explored
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I\/Iodel encoding

32 32
ProcOffsets | --- 67 | : .
StateOffsets [ -~ 201, 206 | I — I | | [ 1]
TransArray | e 1y, e | — — . ! ! L
8[4] [ ] 8[2] 3[1] T82 T81 TSo TaTs
Process LTSs State vector Transition

* In addition: synchronisation rules are encoded as bit sequences

Input has a known size, and never changes:

can be stored in texture memory
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e Block fetches unexplored vectors
from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
immediately processed

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress



e Block fetches unexplored vectors

from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
immediately processed

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress




TU /e s
e Block fetches unexplored vectors

from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
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from global to shared memory
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size n (= state vector length)

e Each thread fetches transition
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e independent transitions are
immediately processed
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e Block fetches unexplored vectors
from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
immediately processed

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress

delay

stop Cross approach

delay delay

approach

Cross| |wait
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e Block fetches unexplored vectors
from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

<R,3><G,1> .. e independent transitions are
immediately processed

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress

delyy
e )i (D

\ pproach

approach

stop 0SS
delay ‘ delay Cross . wait
()——@) T
(3)
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e Block fetches unexplored vectors
from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

<R,3><G,1> .. e independent transitions are
immediately processed

e for synchronisations: all
<G, 0>, <G, 2>, <G, 3> transitions of next label are

fetched, group leader manages
rogress
delyy Pros
) (5) &5 bhight (3
\ pproach

approach

stop 0SS
delay ‘ delay Cross . wait
()——@) T
(3)
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e Block fetches unexplored vectors

from global to shared memory

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

<R,3><G,1> .. e independent transitions are
immediately processed

e for synchronisations: all
<G, 0>, <G, 2>, <G, 3> transitions of next label are

<Y, 1>, <G, 1> fetched, group leader manages
rogress
delyy Prog
. Oleg'i"lght
\ pproach

approach

stop 0SS
delay ‘ delay Cross . wait
()——@) T
(3)
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e Block fetches unexplored vectors

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
immediately processed

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress

delay
e O£ ighe (D

stop Cross proach~ ‘ approach
delay delay CTOSS . n
wal
(@
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e Block fetches unexplored vectors

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
immediately processed

Store lists of reachable states
via transitions labelled
“cross” and combine

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress
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e Block fetches unexplored vectors

e Threads are placed in groups of
size n (= state vector length)

e Each thread fetches transition
entries of its process / state

e independent transitions are
immediately processed

Store lists of reachable states
via transitions labelled
“cross” and combine

e for synchronisations: all
transitions of next label are
fetched, group leader manages
progress
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Property checking

e Add another automaton to the
model network representing the
property

e Example: mutual exclusion
(Dl CSinl | CSing__+(s2)  Property

CSoutl \°P)* " CSout2
CSoutl CSout2

CSout2,CSin1,CSin2 v CSout1,CSinl,CSin2
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State storage

In a warp, random memory access
= bad for performance

Worse when elements consist of >1 integers
[ ]
Cuckoo hashing on GPUs (Alcantara et al.):

- moving around of elements may lead
to duplicate entries

- Drastically more so when element
insertion and lookup is not atomic

- Need of another hash table design

L
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State storage

LA A A A

e Hash table with linear probing

e Buckets of 32 integers fits in
cache line

e Scanning bucket content in
parallel

e warp-the-line (nod to
walk-the-line [Laarman et
al.,’10])
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e Hash table with linear probing

e Buckets of 32 integers fits in
cache line

e Scanning bucket content in
parallel

e warp-the-line (nod to
walk-the-line [Laarman et
al.,’10])

Assumes vector size < 32, limitation
can be overcome
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State storage

[\&r & &

But if groups of n threads generate
a vector, how to employ 32 threads

e Hash table with linear probing

e Buckets of 32 integers fits in
cache line

e Scanning bucket content in
parallel

for storing it?

e warp-the-line (nod to
walk-the-line [Laarman et
al.,’10])

Assumes vector size < 32, limitation
can be overcome




Technlsche Un
IU h.dhm
of Technology

VVYVWVW

e Shared memory hash table

used for temporary storage
e block-local partial
duplicate detection




State storage

LA AR A
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State storage

VVYVWVW

Warp st - -
e Warp stores new vectors

in buckets




State storage

VVYVWVW

memory
e \Warp stores new vectors
in buckets
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e \Warp stores new vectors
in buckets

e Warp scans shared
memory
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Data races

e For vectors in multiple integers

e Warp W1 can be writing vector v while warp
W2 reads

e False positives
e \W2 concludes that v is not in hash table

e However: results in redundant work, not in
ignoring states

e On average 2% redundant work

&
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State retrieval

e Global hash table also

e N\GI NS \&T \& &)

e Requires scanning
hash table for
work

e Work claiming:

e When a group
generates new
vector, it is
claimed by block
for next iteration




Model representation

.. Multiprocessor 1 Multiprocessor N

Next-state _—
computation — |

Block-local state _—
caches

Globalhash ___—

table
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Parameter experiments - blocks
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Runtimes - exploration

1000 100000
CADP/Exp.open(1c) — CADP/Exp.open(1c) —
DH mm LTSmin(6¢C) m=m
NC == DH mmm
P = 10000 DHI:ILIC;; ]
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models models
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Runtimes - property checking

1000 100000
DH+C == DH+C ==
DH+C/deadlock — DH+C/deadlock —
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Further material

 GPUexplore, GPUdecompose, GPUreduce tools online
e http://www.win.tue.nl/~awijs/software.html
e Publications Model Checking & GPUs:

* Parallel Probabilistic Model Checking on General Purpose Graphics Processors, D. Bosnacki, S
Edelkamp, D. Sulewski and A.J. Wijs. International Journal on Software Tools for Technology Transfer,
Volume 13, Issue 1, pp. 21-35, Springer (January 2011)

* Improving GPU Sparse Matrix-Vector Multiplication for Probabilistic Model Checking, A.J. Wijs and D.
Bosnacki. In Proc. 19th International SPIN Workshop on Model Checking of Software (SPIN'12), Oxford,
Great Britain, volume 7385 of Lecture Notes in Computer Science, pp. 98-116, Springer (2012)

* GPUexplore: Many-Core On-The-Fly State Space Exploration Using GPUs, A.J. Wijs and D. Bosnacki. In
Proc. 20th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'14), Grenoble, France, volume 8413 of Lecture Notes in Computer Science, pp. 233-247,
Springer (2014)

* GPU-Based Graph Decomposition into Strongly Connected and Maximal End Components, A.). Wijs, J.-
P. Katoen and D. Bosnacki. In Proc. 26th International Conference on Computer Aided Verification
(CAV'14), Vienna, Austria, volume 8559 of Lecture Notes in Computer Science, pp. 309-325, Springer
(2014)

* GPU Accelerated Strong and Branching Bisimilarity Checking, A.). Wijs. In Proc. 21st International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'15), London,
UK, to appear

e Poster P5185 - Harnessing the Power of GPUs for Model Checking
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Structure of the talk

e Automatic formal verification: what is it and why use it?
» State space generation and analysis

e GEM Toolbox: Model Checking on GPUs
 What does it offer?
e How s itimplemented?

* Range of techniques specifically designed for state space
structures

 What speedups can it achieve?
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Dining Phllosophers Problem

* 5 Philosophers at a dining table

* A philosopher needs two forks to eat (on
the right and left)

* Can a philosopher starve?
e Can all philosophers starve?

* Try out possibilities or ...

* Make a formal specification of the
situation (what is there and what can
happen?)

e Automatically check all possible events
and states of the system

* Model checking
* Allows you to check all kinds of properties
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State space: involves all possible states of
system, and transitions between those
states

Image of the state space of a Bounded
Retransmission Protocol model

Model checking can guarantee that a
system is correct or can reach undesired
states (the dining philosophers can
starve)

But...

Model checking is computationally very
demanding, due to state space explosion
problem

e Linear growth of model tends to lead
to exponential growth of state space




