

 Speeding up a Finite Element

Computation on GPU

Nelson Inoue

Summary

• Introduction

• Finite element implementation on GPU

• Results

• Conclusions

2

University and Researchers

• Pontifical Catholic University of Rio de Janeiro – PUC- Rio

• Group of Technology in Petroleum Engineering - GTEP

PhD Sergio Fontoura
Leader Researcher

PhD Nelson Inoue
Senior Researcher

PhD Carlos Emmanuel
Researcher

MSc Guilherme Righetto
Researcher

MSc Rafael Albuquerque
Researcher

• Research Team

3

Introduction

• Research & Development (R&D) project with Petrobras

• The project began in 2010

• The subject of the project is Reservoir Geomechanics

• There are great interest by oil and gas industry in this subject

• This subject is still little researched

4

Introduction

• What is Reservoir Geomechanics?

– Branch of the petroleum engineering that studies the coupling between the problems of

fluid flow and rock deformation (stress analysis)

• Hydromechanical Coupling

– Oil production causes rock deformation

– Rock deformation contributes to oil production

5

Motivation

• Geomechanical effects during reservoir production

1. Surface subsidence

2. Bedding-parallel slip

3. Fault reactivation

4. Caprock integrity

5. Reservoir compaction

6

Challenge

• Evaluate geomechanical effects in a real reservoir

• Overcome two major challenges

1. To use a reliable coupling scheme between fluid flow and stress

analysis

2. To speed up the stress analysis (Finite Element Method)

Finite Element Analysis spends most part of the simulation

time

7

Hydromechanical coupling

• Theoretical Approach

Coupling program flowchart

8

Finite Element Method

• Partial Differential Equations arise in the mathematical modelling of many

engineering problems

• Analytical solution or exact solution is very complicated

• Alternative: Numerical Solution

– Finite element method, finite difference method, finite volume method, boundary

element method, discrete element method, etc.

9

Finite Element Method

• Finite element method (FEM) is widely
applied in stress analysis

• The domain is an assembly of finite

elements (FEs)

(http://www.mscsoftware.com/product/dytran)

Finite Element

Domain
10

CHRONOS: FE Program

• Chronos has been implemented on GPU

– Motivation: to reduce the simulation time in

the hydromechanical analysis

– Why to use GPU? Much more processing power

GPU
2880 cores

CPU
4 - 8 cores

CETUS Computer with 4 GPUs

4 x GPUs
GeForce GTX Titan

>>
11

Motivation

• GPU Features: (Cuda C Programming Guide)

– Highly parallel, multithreaded and manycore processor

– Tremendous computational horsepower and very high memory bandwidth

Number of FLoating-point Operations Per Second Bandwidth 12

Our Implementation

• GPUs have good performance

• We have developed and implemented an optimized and parallel
finite element program on GPU

• Programming Language CUDA is used to implement the finite element
code

• We have Implemented on GPU:
– Assembly of the stiffness matrix

– Solution of the system of linear equation

– Evaluation of the strain state

– Evaluation of the stress state

13

Global Memory Access on GPU

• Getting maximum performance on GPU

Sequential/Aligned

Good

Strided

Not so good

Random

Bad

– Memory accesses are fully coalesced as long as all threads in a warp access the same
relative address

Coalesced Access

14

Development on CPU

• The assembly of the global stiffness matrix in the conventional FEM

1 2 3 4

1 2

1 2

1 2

2

1

3

– Simple 1D problem

  

   

   









1

22

1

21

1

12

1

111

kk

kk
k

  
   

   









3

22

3

21

3

12

3

113

kk

kk
k

  
   

   









2

22

2

21

2

12

2

112

kk

kk
k

– Element Stiffness Matrix

• Element 1

• Element 2

• Element 3

Real model

Model discretization

Three Finite elements

• Continuous model is discretized by elements

a)

b)

c)

15

Development on CPU

• In terms of CPU implementation

  
   

   









1

22

1

21

1

12

1

11
element

1

kk

kk
k

 

   

   























0000

0000

00kk

00kk

k
1

22

1

21

1

12

1

11

global

Assembly Global
Stiffness Matrix

For i=1, i ≤ numel=3

Evaluate Element
Stiffness Matrix

 

   

       

   
























0000

0kk0

0kkkk

00kk

k
2

22

2

21

2

12

2

11

1

22

1

21

1

12

1

11

global

  
   

   









2

22

2

21

2

12

2

11
element

2

kk

kk
k

          0000000000kk00kkk 1

22

1

21

1

12

1

11element 

                  00000kk00kkkk00kkk 1

22

1

21

1

12

2

11

1

22

1

21

1

12

1

11element 

 

   

       

       

   

























3

22

3

21

3

12

3

11

2

22

2

21

2

12

2

11

1

22

1

21

1

12

1

11

global

kk00

kkkk0

0kkkk

00kk

k

  
   

   









3

22

3

21

3

12

3

113

kk

kk
k

                          3

22

3

21

3

12

3

11

2

22

2

21

2

12

2

11

1

22

1

21

1

12

1

11element kk00kkkk00kkkk00kkk 

i=1

i=2

i=3

– The Storage in the memory

i=1

i=2

i=3

Memory access is not coalesced

16

Development on GPU

• The assembly of the global stiffness matrix on GPU

2

3

1

– Simple 1D problem

– Each row of the global stiffness matrix

• Node

Real model

Four finite elements nodes

1 2

4 2 3

4 3

1

1 2

2 3

3

1

• Node 2

       ][][1

12

1

112211

1row kkkkk  

       ][][2

12

2

11

1

22

1

21

2row kkkkk 

• Node 3        ][][3

12

3

11

2

22

2

21

3row kkkkk 

• Node 3        ][][  1211

3

22

3

21

4row kkkkk

• Continuous model is discretized by nodes
17

Thread = 1

Development on GPU

• In terms of GPU implementation

Column = 1

– The Storage in the memory

Column=1

 

 

 




























3

21

2

21

1

21

k

k

k

0

Thread = 1

   ][][1

12

1

11

1row kk0k 

       ][][2

12

2

11

1

22

1

21

2row kkkkk 

Thread = 2

       ][][3

12

3

11

2

22

2

21

3row kkkkk 

Thread = 3

  globalk

         3

21

2

21

1

21global kkk0k

Thread = 2

Thread = 3

Thread = 1 Thread = 2 Thread = 3

All the threads do the same calculation

The memory access is sequential and aligned

18

 

   

   

   




























3

22

3

21

3

11

2

22

2

21

2

11

1

22

1

21

1

12

kk

kkk

kkk

k0Thread = 1

Development on GPU

• In terms of GPU implementation

Column = 2

– The Storage in the memory

Column=2

Thread = 1

   ][][1

12

1

11

1row kk0k 

       ][][2

12

2

11

1

22

1

21

2row kkkkk 

Thread = 2

       ][][3

12

3

11

2

22

2

21

3row kkkkk 

Thread = 3

  globalk

                     3

22

3

11

2

22

2

11

1

22

1

12

3

21

2

21

1

21global kkkkkkkkk0k

Thread = 2

Thread = 3

Thread = 1 Thread = 2 Thread = 3

Memory access is coalesced

19

Development on GPU

• Solution of the systems of linear equations Ax = b

– Direct solver

– Iterative Solver

– A = stiffness matrix, x = nodal displacement vector (unknown values) and b = nodal force vector

– A is a symmetric and positive-definite

• It was chosen the Conjugate Gradient Method

– Iterative algorithm

– Parallelizable algorithm on GPU

– The operations of a conjugate gradient algorithm is

 suitable to implement on GPU

Conjugate Gradient Algorithm

20

Development on GPU

• Additional remarks

– Stiffness matrix K  sparse matrix

– Sparse matrix = most of the elements are zero

– Assembling the stiffness matrix by nodes = compressed

stiffness matrix

– The bottleneck  Compressed Matrix-Vector Multiplication

• to map the compressed stiffness matrix

Stiffness Matrix – sparse matrix

21

Development on GPU

• Conjugate Gradient Method on GPU

K = f =

– To show two operations of the Conjugate Gradient Method

– The algorithm has been implemented on 4 GPUs

– Each GPU receives a fourth part of the K and f

Stiffness Matrix 128 columns

Nodal Force

Vector

22

Development on GPU

• Conjugate Gradient Method on GPU

d =

– Vector-Vector Multiplication

rT = x =

a)

rTd =

b)

Reduction

rTd =

c)

dnew_1

dnew_2

dnew_3

dnew_4

+

+

+

cudaMemcpyPeer

dnew

dnew

drT

new d

Conjugate gradient algorithm

23

Development on GPU

• Conjugate Gradient Method on GPU

– Matrix-Vector Multiplication

Adq 

b)

d =

a)

d1

d2

d3

d4

+

+

+

cudaMemcpyPeer

d

A = d = q = x =

d =

Conjugate gradient algorithm

24

Development on GPU

• Conjugate Gradient Method on GPU

d =

– Matrix-Vector Multiplication

Adq 

A = x =

c)

d)

q =

x

Reduction

q =

x Vaux = =

Shared
Memory

Vaux

Conjugate gradient algorithm

25

Previous Results

• Linear Equation Solution

– Conjugate Gradient Solution for an Optimized GPU and Naïve CPU Algorithm (2010)

Simulation Time (s)
Number of Elements CPU 8600 GT 9800 GTX GTX 285

10.000 1.26 1.21 0.37 0.36 (3.5 x)

40.000 10.90 9.05 0.99 0.61 (17.87 x)

250.000 130.5 136.3 13.13 5.38 (24.25 x)

Device Type Number of cores Memory size
GPU GeForce GTX 285 1.476 GHz 240 1 GB Global Memory

CPU Intel Xeon X3450 2.67GHz 4 8 GB

TABLE 1: Hardware Configuration

TABLE 2: Results

26

Previous Results

• Assembly of the Stiffness Matrix

– Comparison for an Optimized GPU and Naïve CPU Algorithm (2011)

Device Type Number
of cores

Memory size

GPU GeForce GTX 460M 1.35 GHz 192 1 GB Global Memory

CPU Intel Core i7-740QM 1.73 GHz 4 6 GB

Simulation Time (ms)
Number of nodes CPU GTX 460M

6400 82.28 0.86 (96 x)
8100 122.77 1.02 (120 x)

10000 323.20 1.24 (261 x)

TABLE 3: Hardware Configuration

TABLE 4: Results

27

Current Results

• Finite Element Mesh - 4 discretization

200.000 elements

1.000.000 elements

500.000 elements

2.000.000 elements

Oil and Gas Reservoir

81.000 cells

28

Current Results

• The time spent in each operation in Chronos

 Elements
 200.000 500.000 1.000.000 2.000.000

Operations Time (s) Time (%) Time (s) Time (%) Time (s) Time (%) Time (s) Time (%)

Reading of the Input Data 0,390 2,70 1,407 3,75 2,253 2,96 4,145 2,70

Preparation of the Data 0,985 6,81 2,616 6,97 5,600 7,36 9,468 6,17

Assembly of the Stiffness Matrix 0,001 0,01 0,001 0,00 0,001 0,00 0,001 0,00

Solution of the System of Linear Equation 7,375 50,99 18,985 50,59 37,841 49,74 82,697 53,93

Evaluation of the Strain State 0,001 0,01 0,001 0,00 0,001 0,00 0,001 0,00

Writing of the Displacement Field 0,402 2,78 0,950 2,53 1,923 2,53 3,521 2,30

Writing of the Strain State 5,311 36,72 13,568 36,15 28,463 37,41 53,506 34,89

Total Time 14 100 38 100 76 100 153 100

TABLE 5: Time of each operation

29

Current Results

• The time spent in each operation in Chronos

30

Current Results

• The accuracy verification: Chronos vs. Well known FE program

200.000 elements

31

Current Results

• Time Comparison: Chronos vs. Well known FE program

 Simulation Time (s)

Number of
Chronos 4 GPUs

Well Known Performance
Elements FE Program Improvement
200.000 21 516 (8.6 min) 24,57 x

500.000 43 3407 (56.78 min) 79,23 x

1.000.000 83 Insufficient Memory x
2.000.000 168 Insufficient Memory x

Device Type Number of cores Memory size
4 x GPU GeForce GTX Titan 0.876 GHz 2688 6 GB Global Memory

CPU Intel Core i7-4770 3.40 GHz 4 32 GB

TABLE 6: Hardware Configuration

TABLE 7: Results

32

NVIDIA CUDA Research Center

• Pontifical Catholic University of Rio de Janeiro is a NVIDIA CUDA Research

Center

CUDA Research Center Logo

CUDA Research Center award letter
33

PUC-Rio Homepage

Conclusions

• GPUs has showed great potential to speed up numerical analyses

• However, the speed-up may only be reached, in general, if new programs

or algorithms are implemented and optimized in a parallel way for GPUs

34

Acknowledgements

• The authors would like to thank Petrobras for the financial support and

SIMULIA and CMG for providing the academic licenses for the programs

Abaqus and Imex, respectively

• And NVIDIA for the opportunity to show our work in this Conference

35

Thank You
36

