

Speeding up a Finite Element Computation on GPU

Nelson Inoue

Summary

- Introduction
- Finite element implementation on GPU
- Results
- Conclusions

University and Researchers

- Pontifical Catholic University of Rio de Janeiro PUC- Rio
- Group of Technology in Petroleum Engineering GTEP
- Research Team

PhD Sergio Fontoura Leader Researcher

PhD Nelson Inoue Senior Researcher

PhD Carlos Emmanuel
Researcher

MSc Guilherme Righetto
Researcher

MSc Rafael Albuquerque Researcher

Introduction

- Research & Development (R&D) project with Petrobras
- The project began in 2010
- The subject of the project is Reservoir Geomechanics
- There are great interest by oil and gas industry in this subject
- This subject is still little researched

Introduction

- What is Reservoir Geomechanics?
 - Branch of the petroleum engineering that studies the coupling between the problems of fluid flow and rock deformation (stress analysis)
- Hydromechanical Coupling
 - Oil production causes rock deformation
 - Rock deformation contributes to oil production

Motivation

- Geomechanical effects during reservoir production
 - 1. Surface subsidence
 - 2. Bedding-parallel slip
 - 3. Fault reactivation
 - 4. Caprock integrity
 - 5. Reservoir compaction

Challenge

- Evaluate geomechanical effects in a real reservoir
- Overcome two major challenges
 - 1. To use a reliable coupling scheme between fluid flow and stress analysis
 - To speed up the stress analysis (Finite Element Method)
 Finite Element Analysis spends most part of the simulation time

Hydromechanical coupling

Theoretical Approach

Coupling program flowchart

Finite Element Method

- Partial Differential Equations arise in the mathematical modelling of many engineering problems
- Analytical solution or exact solution is very complicated
- Alternative: Numerical Solution
 - Finite element method, finite difference method, finite volume method, boundary element method, discrete element method, etc.

Finite Element Method

- Finite element method (FEM) is widely applied in stress analysis
- The domain is an assembly of finite elements (FEs)

(http://www.mscsoftware.com/product/dytran)

CHRONOS: FE Program

- Chronos has been implemented on GPU
 - Motivation: to reduce the simulation time in the hydromechanical analysis
 - Why to use GPU? Much more processing power

CETUS Computer with 4 GPUs 4 x GPUs **GeForce GTX Titan**

Motivation

- GPU Features: (Cuda C Programming Guide)
 - Highly parallel, multithreaded and manycore processor
 - Tremendous computational horsepower and very high memory bandwidth

Our Implementation

- GPUs have good performance
- We have developed and implemented an optimized and parallel finite element program on GPU
- Programming Language CUDA is used to implement the finite element code
- We have Implemented on GPU:
 - Assembly of the stiffness matrix
 - Solution of the system of linear equation
 - Evaluation of the strain state
 - Evaluation of the stress state

Global Memory Access on GPU

Getting maximum performance on GPU

 Memory accesses are fully coalesced as long as all threads in a warp access the same relative address

- The assembly of the global stiffness matrix in the conventional FEM
 - Simple 1D problem

- Element Stiffness Matrix
 - Element $\underbrace{ 1 }$ $= \begin{bmatrix} k_{II}^{(1)} & k_{I2}^{(1)} \\ k_{21}^{(1)} & k_{22}^{(1)} \end{bmatrix}$
 - Element 2 $= \begin{vmatrix} k_{11}^{(2)} & k_{12}^{(2)} \\ k_{21}^{(2)} & k_{22}^{(2)} \end{vmatrix}$
- Continuous model is discretized by elements

• In terms of CPU implementation

The Storage in the memory

$$\mathbf{i=1} \quad \begin{bmatrix} k \end{bmatrix}_{element} = \begin{bmatrix} k_{11}^{(l)} & k_{12}^{(l)} & 0 & 0 & k_{21}^{(l)} & k_{22}^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Memory access is not coalesced

$$[k]_{element} = \begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 & 0 & k_{21}^{(1)} & k_{22}^{(1)} & k_{12}^{(2)} & k_{12}^{(1)} & 0 & 0 & k_{21}^{(1)} & k_{22}^{(1)} & 0 & 0 & 0 \end{bmatrix}$$

$$[k]_{element} = \begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 & 0 & k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} & k_{12}^{(2)} & 0 & 0 & k_{21}^{(2)} & k_{22}^{(2)} + k_{11}^{(3)} & k_{12}^{(3)} & 0 & 0 & k_{21}^{(3)} & k_{22}^{(3)} \end{bmatrix}$$

- The assembly of the global stiffness matrix on GPU
 - Simple 1D problem

Each row of the global stiffness matrix

• Node 1
$$\longrightarrow$$
 $[k^{row=1}] = [k_{II}^{(x)} \quad k_{22}^{(x)} + k_{II}^{(I)} \quad k_{12}^{(I)}]$

• Node 2
$$\longrightarrow$$
 $[k^{row=2}] = [k_{21}^{(1)} \quad k_{22}^{(1)} + k_{11}^{(2)} \quad k_{12}^{(2)}]$

• Node
$$3 \longrightarrow [k^{row=3}] = [k_{21}^{(2)} \quad k_{22}^{(2)} + k_{11}^{(3)} \quad k_{12}^{(3)}]$$

• Node 3
$$\longrightarrow$$
 $[k^{row=4}] = [k_{21}^{(3)} \quad k_{22}^{(3)} + k_{11}^{(x)} \quad k_{12}^{(x)}]$

Continuous model is discretized by nodes

In terms of GPU implementation

The Storage in the memory

In terms of GPU implementation

The Storage in the memory

Memory access is coalesced

- Solution of the systems of linear equations Ax = b
 - Direct solver
 - Iterative Solver
 - A = stiffness matrix, x = nodal displacement vector (unknown values) and b = nodal force vector
 - A is a symmetric and positive-definite
- It was chosen the Conjugate Gradient Method
 - Iterative algorithm
 - Parallelizable algorithm on GPU
 - The operations of a conjugate gradient algorithm is suitable to implement on GPU

Conjugate Gradient Algorithm

$$\begin{split} i &\leftarrow 0; \ \mathbf{r} \leftarrow \mathbf{b} - \mathbf{A}\mathbf{x}; \ \mathbf{d} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \\ \delta_{new} &\leftarrow \mathbf{r}^T\mathbf{d}; \ \delta_0 \leftarrow \delta_{new}; \\ \mathbf{while} \ i &< i_{max} \ \mathbf{and} \ \delta_{new} > \epsilon^2\delta_0 \ \mathbf{do} \\ \mathbf{q} &\leftarrow \mathbf{A}\mathbf{d}; \ \alpha \leftarrow \frac{\delta_{new}}{\mathbf{d}^T\mathbf{q}}; \\ \mathbf{x} &\leftarrow \mathbf{x} + \alpha\mathbf{d}; \ \mathbf{r} \leftarrow \mathbf{r} - \alpha\mathbf{q}; \\ \mathbf{s} &\leftarrow \mathbf{M}^{-1}\mathbf{r}; \ \delta_{old} \leftarrow \delta_{new}; \\ \delta_{new} &\leftarrow \mathbf{r}^T\mathbf{s}; \ \beta \leftarrow \frac{\delta_{new}}{\delta_{old}}; \\ \mathbf{d} &\leftarrow \mathbf{r} + \beta\mathbf{d}; \ i \leftarrow i + 1; \end{split}$$
 end

- Additional remarks
 - Stiffness matrix K → sparse matrix
 - Sparse matrix = most of the elements are zero
 - Assembling the stiffness matrix by nodes = compressed stiffness matrix

- The bottleneck → <u>Compressed Matrix</u>-<u>Vector</u> Multiplication
 - to map the compressed stiffness matrix

- Conjugate Gradient Method on GPU
 - To show two operations of the Conjugate Gradient Method
 - The algorithm has been implemented on 4 GPUs
 - Each GPU receives a fourth part of the K and f

- Conjugate Gradient Method on GPU
 - Vector-Vector Multiplication $\delta_{new} = r^T d$

Conjugate gradient algorithm

$$\begin{array}{c} i \leftarrow 0; \ \mathbf{r} \leftarrow \mathbf{b} - \mathbf{A}\mathbf{x}; \ \mathbf{d} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \\ \delta_{new} \leftarrow \mathbf{r}^T\mathbf{d}; \\ \delta_0 \leftarrow \delta_{new}; \\ \mathbf{while} \ i < i_{max} \ \mathbf{and} \ \delta_{new} > \epsilon^2 \delta_0 \ \mathbf{do} \\ \mathbf{q} \leftarrow \mathbf{A}\mathbf{d}; \ \alpha \leftarrow \frac{\delta_{new}}{\mathbf{d}^T\mathbf{q}}; \\ \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{d}; \ \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{q}; \\ \mathbf{s} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \ \delta_{old} \leftarrow \delta_{new}; \\ \delta_{new} \leftarrow \mathbf{r}^T\mathbf{s}; \ \beta \leftarrow \frac{\delta_{new}}{\delta_{old}}; \\ \mathbf{d} \leftarrow \mathbf{r} + \beta \mathbf{d}; \ i \leftarrow i + 1; \\ \mathbf{end} \end{array}$$

- Conjugate Gradient Method on GPU
 - Matrix-Vector Multiplication

Conjugate gradient algorithm

$$\begin{array}{l} i \leftarrow 0; \ \mathbf{r} \leftarrow \mathbf{b} - \mathbf{A}\mathbf{x}; \ \mathbf{d} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \\ \delta_{new} \leftarrow \mathbf{r}^T\mathbf{d}; \ \delta_0 \leftarrow \delta_{new}; \\ \mathbf{while} \ i < i_{max} \ \mathbf{and} \ \delta_{new} > \epsilon^2\delta_0 \ \mathbf{do} \\ \mathbf{q} \leftarrow \mathbf{A}\mathbf{d}; \ \alpha \leftarrow \frac{\delta_{new}}{\mathbf{d}^T\mathbf{q}}; \\ \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{d}; \ \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{q}; \\ \mathbf{s} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \ \delta_{old} \leftarrow \delta_{new}; \\ \delta_{new} \leftarrow \mathbf{r}^T\mathbf{s}; \ \beta \leftarrow \frac{\delta_{new}}{\delta_{old}}; \\ \mathbf{d} \leftarrow \mathbf{r} + \beta \mathbf{d}; \ i \leftarrow i + 1; \\ \mathbf{end} \end{array}$$

- Conjugate Gradient Method on GPU
 - Matrix-Vector Multiplication q = Ad

Conjugate gradient algorithm

$$\begin{split} i &\leftarrow 0; \ \mathbf{r} \leftarrow \mathbf{b} - \mathbf{A}\mathbf{x}; \ \mathbf{d} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \\ \delta_{new} &\leftarrow \mathbf{r}^T\mathbf{d}; \ \delta_0 \leftarrow \delta_{new}; \\ \mathbf{while} \ i &< i_{max} \ \mathbf{and} \\ \mathbf{q} \leftarrow \mathbf{A}\mathbf{d}; \ \mathbf{o} \leftarrow \frac{\delta_{new}}{\delta^T\mathbf{q}}; \\ \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{d}; \ \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{q}; \\ \mathbf{s} \leftarrow \mathbf{M}^{-1}\mathbf{r}; \ \delta_{old} \leftarrow \delta_{new}; \\ \delta_{new} \leftarrow \mathbf{r}^T\mathbf{s}; \ \beta \leftarrow \frac{\delta_{new}}{\delta_{old}}; \\ \mathbf{d} \leftarrow \mathbf{r} + \beta \mathbf{d}; \ i \leftarrow i + 1; \\ \mathbf{end} \end{split}$$

Previous Results

• Linear Equation Solution

Conjugate Gradient Solution for an Optimized GPU and Naïve CPU Algorithm (2010)

TABLE 1: Hardware Configuration

Device	Туре	Number of cores	Memory size
GPU	GeForce GTX 285 1.476 GHz	240	1 GB Global Memory
CPU	Intel Xeon X3450 2.67GHz	4	8 GB

TABLE 2: Results

	Simulation Time (s)			
Number of Elements	CPU	8600 GT	9800 GTX	GTX 285
10.000	1.26	1.21	0.37	0.36 (3.5 x)
40.000	10.90	9.05	0.99	0.61 (17.87 x)
250.000	130.5	136.3	13.13	5.38 (24.25 x)

Previous Results

- Assembly of the Stiffness Matrix
 - Comparison for an Optimized GPU and Naïve CPU Algorithm (2011)

TABLE 3: Hardware Configuration

Device	Туре	Number	Memory size
		of cores	
GPU	GeForce GTX 460M 1.35 GHz	192	1 GB Global Memory
CPU	Intel Core i7-740QM 1.73 GHz	4	6 GB

TABLE 4: Results

_	Simulation Time (ms)		
Number of nodes	CPU	GTX 460M	
6400	82.28	0.86 (96 x)	
8100	122.77	1.02 (120 x)	
10000	323.20	1.24 (<mark>261 x</mark>)	

• Finite Element Mesh - 4 discretization

• The time spent in each operation in Chronos

TABLE 5: Time of each operation

	Elements							
	200.000		500.000		1.000.000		2.000.000	
Operations	Time (s)	Time (%)	Time (s)	Time (%)	Time (s)	Time (%)	Time (s)	Time (%)
Reading of the Input Data	0,390	2,70	1,407	3,75	2,253	2,96	4,145	2,70
Preparation of the Data	0,985	6,81	2,616	6,97	5,600	7,36	9,468	6,17
Assembly of the Stiffness Matrix	0,001	0,01	0,001	0,00	0,001	0,00	0,001	0,00
Solution of the System of Linear Equation	7,375	50,99	18,985	50,59	37,841	49,74	82,697	53,93
Evaluation of the Strain State	0,001	0,01	0,001	0,00	0,001	0,00	0,001	0,00
Writing of the Displacement Field	0,402	2,78	0,950	2,53	1,923	2,53	3,521	2,30
Writing of the Strain State	5,311	36,72	13,568	36,15	28,463	37,41	53,506	34,89
Total Time	14	100	38	100	76	100	153	100

• The time spent in each operation in Chronos

• The accuracy verification: Chronos vs. Well known FE program

• Time Comparison: Chronos vs. Well known FE program

TABLE 6: Hardware Configuration

Device	Туре	Number of cores	Memory size
4 x GPU	GeForce GTX Titan 0.876 GHz	2688	6 GB Global Memory
CPU	Intel Core i7-4770 3.40 GHz	4	32 GB

TABLE 7: Results

Number of	Chronos 4 GPUs	Well Known	Performance
Elements	CIIIOIIOS 4 GPOS	FE Program	Improvement
200.000	21	516 (8.6 min)	24,57 x
500.000	43	3407 (56.78 min)	79,23 x
1.000.000	83	Insufficient Memory	X
2.000.000	168	Insufficient Memory	Х

NVIDIA CUDA Research Center

Pontifical Catholic University of Rio de Janeiro is a NVIDIA CUDA Research

Center

CUDA Research Center Logo

PUC-Rio Homepage

CUDA Research Center award letter

Conclusions

- GPUs has showed great potential to speed up numerical analyses
- However, the speed-up may only be reached, in general, if new programs
 or algorithms are implemented and optimized in a parallel way for GPUs

Acknowledgements

- The authors would like to thank Petrobras for the financial support and SIMULIA and CMG for providing the academic licenses for the programs Abaqus and Imex, respectively
- And NVIDIA for the opportunity to show our work in this Conference

Thank You