
Accelerating Graph

Algorithms on Emerging

Architectures

ANTONINO TUMEO AND MAHANTESH HALAPPANAVAR

March 18, 2015 1

Pacific Northwest National Laboratory

Overview

Introduction

Graph Matching

½ approx matching

Implementations and results

Community Detection

the Louvain method

Implementations and results

Conclusions

2

Applicability of Graph Algorithms

Complex Networks

Community Detection

Bioinformatics

Knowledge Discovery

Graph Databases

Language Understanding Pattern Recognition

Big Science

3

Graph algorithms as Irregular Kernels

Irregularity in data structures

Pointer- or linked-list based data structures very poor spatial and temporal

locality

Unpredictable data accesses

Fine grained data accesses

Irregularity in control

Divergent branches

If (vertex==x) do a; else do b

Foreach vertex v explore neighbors of v

Irregularity in communication patterns

Unpredictable and fine grained communication

A consequence of irregularity in data structures and in control

4

Additional Characteristics

Some datasets may be very large

Way more than what is currently available in a single cluster node

…and, obviously, a GPU

Very difficult to partition in a balanced way

Large amounts of parallelism (e.g., each vertex, each edge in the

graph)

Usually, high synchronization intensity

Concurrent activities accessing the same elements of the data structures

Datasets may be dynamically updated

5

Self-reinforcing Trend of FLOP-computing

The HPC community builds systems for scientific simulations.

We need systems for data analysis, discovery, and inferencing.

ARE THERE ARCHITECTURES MORE AMENABLE TO THESE

WORKLOADS? WHAT DO WE REALLY NEED?

Application Trends

• High computational density

• Local data access

• Regular, partitionable structures

Architecture Trends

• Complex arithmetic units

• Deep cache hierarchies

• Low interconnect bandwidth

6

Breadth First Search

Prototypical kernel for graphs

Focus of the Graph500

“You have to solve the BFS before looking at the other algorithms”

True, but:

Graph algorithms may have different communication/computation balance

than BFS

Over-optimizing for a single benchmark is not always good

Domain scientists still want to look at more efficient ways (i.e., lower

computational complexity) to solve graph problems

7

½ Approximate Weighted Matching

Problem: Given a graph G = (V,E) find a set (M) of pairwise non-

adjacent edges

i.e., no two edges share a common vertex

8

Maximum matching: maximizes

cardinality (number of matched edges)

Maximum weighted matching:

maximizes sum of the weights of the

matched edges

Half-approximate weighted matching:

guarantees that the sum of weights of

matched edges is at least half of the

optimal solution

Locally dominant algorithm for half-

approximate weighted matching

9

Manne and Bisseling (2007)

ProcessVertex

10

Manne and Bisseling (2007)

Parallel implementation

11
Halappanavar et. al., “Approximate weighted matching on emerging manycore and multithreaded
architectures“, IJHPCA 2012

Parallel implementation (2)

12
Halappanavar et. al., “Approximate weighted matching on emerging manycore and multithreaded
architectures“, IJHPCA 2012

Challenges for GPU implementation

Load balancing within a warp: thread processing the vertex with the largest

degree is the slowest

Possible solution: block work into equally sized groups, and use different threads

for blocks

Works for well balanced inputs and BFS, not suitable for our matching algorithm

that needs synchronization between threads that process adjacency list of a vertex

Coalescing memory accesses: vertices added in random order to the queue

Possible solution: reordering queues

May not be computationally cheap…

Branch divergence: if statements in the algorithm

Possible solution: restructure the algorithm

Not trivial…

13

A very diverse set of platforms…

14

Cray XMT and Extended Memory

Semantics…

15

The power of full/empty bits:

purge: sets the full/empty bit to empty and the value to zero;

readff: reads a memory location only when the full/ empty bit is full and

leaves the bit full when read finishes;

readfe: reads a memory location only when the full/ empty bit is full and

leaves the bit empty when read finishes;

writeef: writes to a memory location only if the full/empty bit is empty, and

flips the bit to full when the write finishes.

The XMT implementation

16

ProcessVertexDF

17

Magny Cours

18

RMAT- ER: (0.25, 0.25, 0.25, 0.25)
RMAT-G: (0.45, 0.15, 0.15, 0.25)
RMAT-B: (0.55, 0.15, 0.15, 0.15)

RMAT-ER: Erdös–Rényi random
graphs.

RMAT-G and RMAT-B: real-world
graphs with skewed normal
distributions for vertex degrees and
small-world phenomenon of short
average distance between pairs of

vertices.

Nehalem

19

Tesla & Fermi (SCALE 23)

20

Cray XMT

21

The Suitor Algorithm

22
Manne and Halappanavar, “New Effective Multithreaded Matching Algorithms“, IPDPS 2014

Parallelizing the Suitor Algorithm

23

In parallel for each vertex

Lock partner

Unlock partner

if w(current,v) = ws(v) and
current < suitor(v) but line 17
executed -> could be different
vertices

Lock(v) to execute test

Manne and Halappanavar, “New Effective Multithreaded Matching Algorithms“, IPDPS 2014

GPU challenges

A thread per vertex

Load imbalance

Locks!

Can implement locks with compare-and-swap, but need to disalign

threads in a warp

Different chunking (e.g., assign a thread-block per vertex and

evaluate neighbors in parallel)

Sizing of thread-blocks to maximize utilization

Redistribution of workload

24

Preliminary results (seconds)

25
Naim et al., in progress

Graph X86 - 8 threads Tesla K40 Speed up

af_1_k101.mtx 60.457764 26.304256 2.3

af_2_k101.mtx 69.582275 25.323263 2.7

af_3_k101.mtx 67.461426 25.777952 2.6

af_4_k101.mtx 61.180908 29.906528 2.0

af_5_k101.mtx 61.199951 29.084831 2.1

pkustk10.mtx 13.904053 8.650304 1.6

pkustk11.mtx 15.187988 10.354752 1.4

pkustk12.mtx 20.045166 16.716225 1.2

pkustk14.mtx 36.321045 27.059135 1.3

roadNet-CA.mtx 107.801025 7.95504 13.5

roadNet-PA.mtx 75.349854 4.3848 17.2

roadNet-TX.mtx 95.695068 5.393344 17.7

Community Detection in Graphs

Problem: Given G(V,E,), identify tightly knit groups of

vertices that strongly correlate to one another within their

group, and sparsely so, outside.

26

Input :
 V = {1,2,… n }
 E: a set of M edges
 (e): weight of edge e
 (non-negative)

 m = eE (e)

Output :
 A partitioning of V into
 k mutually disjoint communities
 P = {C1, C2,… Ck}
 such that modularity
 is optimized.

Numerous applications spanning various scientific and social domains of computing

community

Modularity (Newman 2004)

A statistical measure for assessing the quality of a given community-

wise partitioning P of the vertices V:

27

Fraction of
intra-cluster edges

Equivalent fraction in
a random graph

intra-cluster
edges

inter-cluster
edges

Community Detection

Modularity optimization (Newman & Girvan, 2004)

Compute a partitioning P of V into an arbitrary number (k) of

clusters such that the modularity score (Q) of the partitioning is

maximized.

28

Notation Definition

C(i) Cluster containing vertex i

ei->C(i) Number of edges from i to
vertices in C(i)

aC Sum of the degree of all
vertices in cluster C

Q = 2(5+13)/40 - (28+12)/40*40
 = 0.875

Modularity optimization is NP-Hard (Brandes et al. 2006).

Louvain method (Blondel et al. 2008)

Multi-phase iterative heuristic

Within each iteration:

For every vertex i  V:

1. Let C(i) : current community of i

2. Compute modularity gain (Q) for

moving i into each of i’s

neighboring communities

3. Let Cmax : neighboring community

with largest Q

4. If (Q>0) { Set C(i) = Cmax }

29

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Louvain method (Blondel et al. 2008)

Multi-phase iterative heuristic

Within each iteration:

For every vertex i  V:

1. Let C(i) : current community

of i

2. Compute modularity gain

(Q) for moving i into each of

i’s neighboring communities

3. Let Cmax : neighboring

community with largest Q

4. If (Q>0) { Set C(i) = Cmax }

30

Next
phase

Upon no further
modularity gain

5 4

 3

2

1

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Another cool architecture…

31

36 Tiles

6 NoCs

User Level, Static, I/O, Memory and Cache (3)

Processor Engine:

VLIW – 64 bits – 1.2 GHz

Cache Engine:

32 KB L1, 256 KB L2

Dynamic Distributed L2 (Configurable homing for

memory pages)

Switch Engine:

Connects to the NoCs

2 DDR3 memory controllers

Configurable striping size

HW accelerators

Cryptography, compression, packet inspection

Power instrumentation

Outputs to the IPMI Voltage, Current, Power for

processor and memory

TILE-Gx 8036 processor

Memory homing strategies

32

Local homing

Page homed in local cache

Remote homing

Page homed in remote cache

Hash-for-home

Each page has a line homed in different caches, using a round robin

distribution

Memory layout schemes explored

33

Scheme Description Comments Locality

Hashed Memory distributed in round-
robin blocks of 64 bytes across
tiles

Limited data locality Unaware

Local Local homed pages used for
private data, hashed for shared

Exploits locality where its clearly available Partially-
aware

Padded Principal arrays partitioned into
n/p chunks, private data is local

Chunks are rounded up to x64 KB page size,
memory accesses are explicitly aligned to
match page boundaries

Partially-
aware

Partitio
ned

Vertex and edge lists are
partitioned according to an
external partitioner

Use PaToH and METIS as partitioners for
initial graphs, local memory is used for each
partition

Fully aware

Page	boundaries	

Tile	ownership	boundaries	

Tile	0	 Tile	1	 Tile	2	 Tile	3	

Padded Partitioned

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014

Mapping the Louvain Method on Tilera:

Task Parallelization

34

Two schemes: Load balance-
centric and locality-centric

Must take into account varying
costs of processing different
vertices (depends on their
neighborhood communities)

Load balance-centric: use
OpenMP guided scheduling,
does not exploit locality
information from the data layout

Locality-centric: custom task-
based work-stealing, execute
local tasks first before load
balancing across threads

Tile	0	 Tile	1	 Tile	2	 Tile	3	

0	 0	 1	 1	 2	 3	 3	 2	

processed	array	

steal	

Locality-centric scheme w/ work-stealing

Task
dequeues

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014

Results on Tilera

35

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1 2 4 8 16 24 32 36

s
p

e
e

d
u

p
 w

/r
e
s

p
e

c
t

to
 s

e
q

u
e

n
ti

a
l

of cores

hash

local

padded

patoh

padded-patoh

metis

padded-metis

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1 2 4 8 16 24 32 36

s
p

e
e

d
u

p
 w

/r
e
s

p
e

c
t

to
 s

e
q

u
e

n
ti

a
l

of cores

hash

local

padded

patoh

padded-patoh

metis

padded-metis

Channel – guided (load balance-centric) Channel – tasks (locality-centric)

The local-guided scheme performed the best (16x speedup)

 Task parallelism w/ work-stealing preserves locality better but also

introduces more overheads in generating the local task queues

 The Channel input is a banded graph => slower convergence, more

phases

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014

Results on Tilera (2)

36

uk-2002 – guided (load balance-centric) uk-2002- tasks (locality-centric)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

1 2 4 8 16 24 32 36

s
p

e
e

d
u

p
 w

/r
e
s

p
e

c
t

to
 s

e
q

u
e

n
ti

a
l

of cores

hash

local

padded

patoh

padded-patoh

metis

padded-metis

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

1 2 4 8 16 24 32 36

s
p

e
e

d
u

p
 w

/r
e
s

p
e

c
t

to
 s

e
q

u
e

n
ti

a
l

of cores

hash

local

padded

patoh

padded-patoh

metis

padded-metis

The local-guided scheme performed the best (45x speedup)

 Task parallelism w/ work-stealing preserves locality beter but also

introduces more overheads in generating the local task queues

 The uk-2002 input is power-law with a high community structure =>

faster convergence, lower parallel overhead

 Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014

Run-time and Modularity Results: Tilera vs.

x86

37

Input Serial (Tilera) Parallel (Tilera/36) Serial
(Intel)

Parallel (Intel/32)

Modularity Time (s) Modularity Time (s) Time (s) Modularity Time (s)

CNR 0.912784 37.89 0.912497 0.87 4.36 0.912626 1.25

Channel 0.849672 287.65 0.934461 17.57 30.92 0.934671 25.58

Europe - - 0.998843 335.00 - 0.998846 163.03

Uk-2002 0.989700 2340.16 0.989526 50.20 335.99 0.989532 52.18

MG2 0.998426 4011.61 0.998416 159.63 1313.74 0.998426 101.96

Single core runs on Tilera were generally much slower than the

corresponding x86 single core runs

 However, the timings on 36 Tilera cores were comparable and at

times faster than on 32 x86 cores => better scaling

 Modularities achieved by both systems were highly comparable with

the x86 figures marginally better than Tilera’s

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014

What about GPUs?

Main challenge is finding neighboring communities of a vertex

Perform an initial search, generating a map (community, degree)

After, calculate gains in modularity by moving the vertex to each one of

those communities

Possible solution for GPUs

Instead of generating a map, iterate on each neighbor of a vertex

For each neighbor, check the other neighbors in the same community…

And calculate gain in modularity

Flops are cheap!

Store only the maximum

Still refining the algorithm…

38

Conclusions

Not only Breadth First Search

A reference kernel - for other algorithms to work, BFS must work first…

..but there are other graph algorithms

Matching and Graph Clustering

Relevant graph kernels for many computing problems

Lot of parallelism, but hard to implement on architectures optimized for

regular computation…

…and scaling is even harder!

Discussed some of the algorithms we are exploring

39

Thank you for your attention!

Questions?

antonino.tumeo@pnnl.gov

mahantesh.halappanavar@pnnl.gov

All our collaborators!

Call for papers! - Special issue of the Journal of Parallel Computing

(PARCO) on Theory and Practice of Irregular Applications (TaPIA)

http://www.journals.elsevier.com/parallel-computing/call-for-

papers/parallel-computing-on-theory-and-practice-of-irregular-appli/

Deadline: March 30

Guest editors: Antonino Tumeo, Oreste Villa, John Feo

40

mailto:antonino.tumeo@pnnl.gov
mailto:mahantesh.halappanavar@pnnl.gov

