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Applicability of Graph Algorithms 

Complex Networks 

Community Detection 

Bioinformatics 

Knowledge Discovery 

Graph Databases 

Language Understanding Pattern Recognition 

Big Science 
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Graph algorithms as Irregular Kernels 

Irregularity in data structures 

Pointer- or linked-list based data structures very poor spatial and temporal 

locality 

Unpredictable data accesses 

Fine grained data accesses 

Irregularity in control 

Divergent branches 

If (vertex==x) do a; else do b 

Foreach vertex v explore neighbors of v 

Irregularity in communication patterns 

Unpredictable and fine grained communication 

A consequence of irregularity in data structures and in control 
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Additional Characteristics 

Some datasets may be very large 

Way more than what is currently available in a single cluster node 

…and, obviously, a GPU 

Very difficult to partition in a balanced way 

Large amounts of parallelism (e.g., each vertex, each edge in the 

graph) 

Usually, high synchronization intensity 

Concurrent activities accessing the same elements of the data structures 

Datasets may be dynamically updated 
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Self-reinforcing Trend of FLOP-computing 

The HPC community builds systems for scientific simulations. 

 

 

 

 

 

 

 

 

 

We need systems for data analysis, discovery, and inferencing. 

 

ARE THERE ARCHITECTURES MORE AMENABLE TO THESE 

WORKLOADS? WHAT DO WE REALLY NEED? 

Application Trends 

• High computational density 

• Local data access 

• Regular, partitionable structures 

Architecture Trends 

• Complex arithmetic units 

• Deep cache hierarchies 

• Low interconnect bandwidth 
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Breadth First Search 

Prototypical kernel for graphs 

Focus of the Graph500 

 

“You have to solve the BFS before looking at the other algorithms” 

 

True, but: 

Graph algorithms may have different communication/computation balance 

than BFS 

Over-optimizing for a single benchmark is not always good 

Domain scientists still want to look at more efficient ways (i.e., lower 

computational complexity) to solve graph problems 
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½ Approximate Weighted Matching 

Problem: Given a graph G = (V,E) find a set (M) of pairwise non-

adjacent edges 

i.e., no two edges share a common vertex 
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Maximum matching: maximizes 

cardinality (number of matched edges) 

 

Maximum weighted matching: 

maximizes sum of the weights of the 

matched edges 

 

Half-approximate weighted matching: 

guarantees that the sum of weights of 

matched edges is at least half of the 

optimal solution 



Locally dominant algorithm for half-

approximate weighted matching  
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Manne and Bisseling (2007)  



ProcessVertex 
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Manne and Bisseling (2007)  



Parallel implementation 
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Halappanavar et. al., “Approximate weighted matching on emerging manycore and multithreaded 
architectures“, IJHPCA 2012 



Parallel implementation (2) 

12 
Halappanavar et. al., “Approximate weighted matching on emerging manycore and multithreaded 
architectures“, IJHPCA 2012 



Challenges for GPU implementation 

Load balancing within a warp: thread processing the vertex with the largest 

degree is the slowest 

Possible solution: block work into equally sized groups, and use different threads 

for blocks 

Works for well balanced inputs and BFS, not suitable for our matching algorithm 

that needs synchronization between threads that process adjacency list of a vertex 

 

Coalescing memory accesses: vertices added in random order to the queue 

Possible solution: reordering queues 

May not be computationally cheap… 

 

Branch divergence: if statements in the algorithm 

Possible solution: restructure the algorithm 

Not trivial… 
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A very diverse set of platforms… 
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Cray XMT and Extended Memory 

Semantics… 
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The power of full/empty bits: 

purge: sets the full/empty bit to empty and the value to zero;  

readff: reads a memory location only when the full/ empty bit is full and 

leaves the bit full when read finishes;  

readfe: reads a memory location only when the full/ empty bit is full and 

leaves the bit empty when read finishes;  

writeef: writes to a memory location only if the full/empty bit is empty, and 

flips the bit to full when the write finishes. 

 

 

 



The XMT implementation 
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ProcessVertexDF 
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Magny Cours 
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RMAT- ER: (0.25, 0.25, 0.25, 0.25)  
RMAT-G: (0.45, 0.15, 0.15, 0.25) 
RMAT-B: (0.55, 0.15, 0.15, 0.15) 
 
RMAT-ER: Erdös–Rényi random 
graphs.  
 
RMAT-G and RMAT-B: real-world 
graphs with skewed normal 
distributions for vertex degrees and 
small-world phenomenon of short 
average distance between pairs of 

vertices.  



Nehalem 
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Tesla & Fermi (SCALE 23) 
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Cray XMT 
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The Suitor Algorithm 
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Manne and Halappanavar, “New Effective Multithreaded Matching Algorithms“, IPDPS 2014 



Parallelizing the Suitor Algorithm 
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In parallel for each vertex 

Lock partner 

Unlock partner 

if w(current,v) = ws(v) and 
current < suitor(v) but line 17 
executed -> could be different 
vertices 
 
Lock(v) to execute test  

Manne and Halappanavar, “New Effective Multithreaded Matching Algorithms“, IPDPS 2014 



GPU challenges 

A thread per vertex 

Load imbalance 

Locks! 

 

Can implement locks with compare-and-swap, but need to disalign 

threads in a warp 

Different chunking (e.g., assign a thread-block per vertex and 

evaluate neighbors in parallel) 

Sizing of thread-blocks to maximize utilization 

Redistribution of workload 
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Preliminary results (seconds) 
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Naim et al., in progress 

Graph X86 - 8 threads Tesla K40 Speed up 

af_1_k101.mtx 60.457764 26.304256 2.3 

af_2_k101.mtx 69.582275 25.323263 2.7 

af_3_k101.mtx 67.461426 25.777952 2.6 

af_4_k101.mtx 61.180908 29.906528 2.0 

af_5_k101.mtx 61.199951 29.084831  2.1 

pkustk10.mtx 13.904053 8.650304 1.6 

pkustk11.mtx 15.187988 10.354752 1.4 

pkustk12.mtx 20.045166 16.716225 1.2 

pkustk14.mtx 36.321045  27.059135  1.3 

roadNet-CA.mtx 107.801025 7.95504 13.5 

roadNet-PA.mtx 75.349854 4.3848 17.2 

roadNet-TX.mtx 95.695068  5.393344 17.7 



Community Detection in Graphs 

Problem:  Given G(V,E,), identify tightly knit groups of 

vertices that strongly correlate to one another within their 

group, and sparsely so, outside.  
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Input : 
 V = {1,2,… n }    
 E: a set of M edges  
 (e): weight of edge e  
 (non-negative) 

 m = eE (e) 

 

Output : 
 A partitioning of V into  
    k mutually disjoint communities 
    P = {C1, C2,… Ck}    
     such that modularity  
     is optimized. 
  

Numerous applications spanning various scientific and social domains of computing 

community 



Modularity (Newman 2004) 

A statistical measure for assessing the quality of a given community-

wise partitioning P of the vertices V:  
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Fraction of  
intra-cluster edges 

Equivalent fraction in  
a random graph 

intra-cluster 
edges 

inter-cluster 
edges 



Community Detection 

Modularity optimization (Newman & Girvan, 2004) 

Compute a partitioning P of V into an arbitrary number (k) of 

clusters such that the modularity score (Q) of the partitioning is 

maximized. 
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Notation Definition 

C(i) Cluster containing vertex i 

ei->C(i) Number of edges from i to 
vertices in C(i) 

aC Sum of the degree of all 
vertices in cluster C 

Q = 2(5+13)/40 - (28+12)/40*40 
    =  0.875 

Modularity optimization is NP-Hard (Brandes et al. 2006). 



Louvain method (Blondel et al. 2008) 

Multi-phase iterative heuristic 

Within each iteration:  

For every vertex i  V:  

1. Let C(i) : current community of i 

2. Compute modularity gain (Q) for 

moving i into each of i’s 

neighboring communities 

3. Let Cmax : neighboring community 

with largest Q 

4. If (Q>0)  { Set C(i) = Cmax } 
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Input: G(V,E) 
Goal: Compute a partitioning of V that maximizes modularity (Q) 
Init: Every vertex starts in its own community (i.e., C(i)={i}) 



Louvain method (Blondel et al. 2008) 

Multi-phase iterative heuristic 

Within each iteration:  

For every vertex i  V:  

1. Let C(i) : current community 

of i 

2. Compute modularity gain 

(Q) for moving i into each of 

i’s neighboring communities 

3. Let Cmax : neighboring 

community with largest Q 

4. If (Q>0)  { Set C(i) = Cmax } 
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Next 
phase 

Upon no further 
modularity gain 

5 4 

 3 

2 

1 

Input: G(V,E) 
Goal: Compute a partitioning of V that maximizes modularity (Q) 
Init: Every vertex starts in its own community (i.e., C(i)={i}) 



Another cool architecture… 
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36 Tiles 

6 NoCs 

User Level, Static, I/O, Memory and Cache (3) 

Processor Engine: 

VLIW – 64 bits – 1.2 GHz 

Cache Engine: 

32 KB L1, 256 KB L2 

Dynamic Distributed L2 (Configurable homing for 

memory pages) 

Switch Engine: 

Connects to the NoCs 

2 DDR3 memory controllers 

Configurable striping size 

HW accelerators 

Cryptography, compression, packet inspection 

Power instrumentation 

Outputs to the IPMI Voltage, Current, Power for 

processor and memory 

 

TILE-Gx 8036 processor 



Memory homing strategies 
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Local homing 

Page homed in local cache  

Remote homing 

Page homed in remote cache 

Hash-for-home 

Each page has a line homed in different caches, using a round robin 

distribution 



Memory layout schemes explored 
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Scheme Description Comments Locality  

Hashed Memory distributed in round-
robin blocks of 64 bytes across 
tiles 

Limited data locality  Unaware 

Local Local homed pages used for 
private data, hashed for shared 

Exploits locality where its clearly available Partially-
aware 

Padded Principal arrays partitioned into 
n/p chunks, private data is local 

Chunks are rounded up to x64 KB page size, 
memory accesses are explicitly aligned to 
match page boundaries 

Partially-
aware 

Partitio
ned 

Vertex and edge lists are 
partitioned according to an 
external partitioner 

Use PaToH and METIS as partitioners for 
initial graphs, local memory is used for each 
partition 

Fully aware 

Page	boundaries	

Tile	ownership	boundaries	

Tile	0	 Tile	1	 Tile	2	 Tile	3	

Padded Partitioned 

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014  



Mapping the Louvain Method on Tilera:  

Task Parallelization  

34 

Two schemes: Load balance-
centric and locality-centric 

Must take into account varying 
costs of processing different 
vertices (depends on their 
neighborhood communities) 

 

Load balance-centric: use 
OpenMP guided scheduling, 
does not exploit locality 
information from the data layout 

Locality-centric: custom task-
based work-stealing, execute 
local tasks first before load 
balancing across threads 
 

Tile	0	 Tile	1	 Tile	2	 Tile	3	

0	 0	 1	 1	 2	 3	 3	 2	

processed	array	

steal	

Locality-centric scheme w/ work-stealing 

Task 
dequeues 

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014  



Results on Tilera 
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Channel – guided (load balance-centric) Channel – tasks (locality-centric) 

The local-guided scheme performed the best (16x speedup) 

 Task parallelism w/ work-stealing preserves locality better but also 

introduces more overheads in generating the local task queues 

 The Channel input is a banded graph => slower convergence, more 

phases 

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014  



Results on Tilera (2) 
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uk-2002 – guided (load balance-centric) uk-2002- tasks (locality-centric) 
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The local-guided scheme performed the best (45x speedup) 

 Task parallelism w/ work-stealing preserves locality beter but also 

introduces more overheads in generating the local task queues 

 The uk-2002 input is power-law with a high community structure => 

faster convergence, lower parallel overhead 

 Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014  



Run-time and Modularity Results: Tilera vs. 

x86  
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Input Serial (Tilera) Parallel (Tilera/36) Serial 
(Intel)  

Parallel (Intel/32) 

Modularity Time (s) Modularity Time (s) Time (s) Modularity  Time (s) 

CNR 0.912784 37.89 0.912497 0.87 4.36 0.912626 1.25 

Channel 0.849672 287.65 0.934461 17.57 30.92 0.934671 25.58 

Europe - - 0.998843 335.00 - 0.998846 163.03 

Uk-2002 0.989700 2340.16 0.989526 50.20 335.99 0.989532 52.18 

MG2 0.998426 4011.61 0.998416 159.63 1313.74 0.998426 101.96 

Single core runs on Tilera were generally much slower than the 

corresponding x86 single core runs 

 However, the timings on 36 Tilera cores were comparable and at 

times faster than on 32 x86 cores => better scaling 

 Modularities achieved by both systems were highly comparable with 

the x86 figures marginally better than Tilera’s 

Chavarría et al., “Scaling Graph Detection on the Tilera Many-core Architecture”, HiPC 2014  



What about GPUs? 

Main challenge is finding neighboring communities of a vertex 

Perform an initial search, generating a map (community, degree) 

After, calculate gains in modularity by moving the vertex to each one of 

those communities 

 

Possible solution for GPUs 

Instead of generating a map, iterate on each neighbor of a vertex 

For each neighbor, check the other neighbors in the same community… 

And calculate gain in modularity 

Flops are cheap! 

Store only the maximum 

 

Still refining the algorithm… 
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Conclusions 

Not only Breadth First Search 

A reference kernel - for other algorithms to work, BFS must work first… 

..but there are other graph algorithms 

 

Matching and Graph Clustering 

Relevant graph kernels for many computing problems 

Lot of parallelism, but hard to implement on architectures optimized for 

regular computation… 

…and scaling is even harder! 

Discussed some of the algorithms we are exploring 
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Thank you for your attention! 

Questions? 

antonino.tumeo@pnnl.gov 

mahantesh.halappanavar@pnnl.gov 

All our collaborators! 

 

Call for papers! - Special issue of the Journal of Parallel Computing 

(PARCO) on Theory and Practice of Irregular Applications (TaPIA) 

http://www.journals.elsevier.com/parallel-computing/call-for-

papers/parallel-computing-on-theory-and-practice-of-irregular-appli/ 

Deadline: March 30  

Guest editors: Antonino Tumeo, Oreste Villa, John Feo 
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