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Centralities - Concept

Answer questions such as

Who controls the flow in a network?

Who is more important?

Who has more influence?

Whose contribution is significant for
connections?

Different kinds of graph

road networks

social networks

power grids

mechanical mesh

Applications

Covert network (e.g., terrorist
identification)

Contingency analysis (e.g.,
weakness/robustness of networks)

Viral marketing (e.g., who will spread the
word best)

Traffic analysis

Store locations
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Centrality Formally

Closeness Centrality

Let G = (V ,E ) be an unweighted graph with
the vertex set V and edge set E .
cc[v ] =

∑
u∈V

1
d(v ,u) where d(u, v) is the

shortest path length between u and v .

Betweenness Centrality

Let G = (V ,E ) be an unweighted graph. Let
σst be the number of shortest paths
connecting s amd t. Let σst(v) be the
number of such s-t paths passing through v .
bc[v ] =

∑
s 6=v 6=t∈V δst(v) where

δst(v) =
σst(v)
σst

.

Algorithm

In each case, the best algorithm computes the shortest path graph rooted in each vertex of the
graph and extract the relevant information. The complexity is O(E ) per source, O(VE ) in
total, which makes its computationally expensive.
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Computing Breadth First Traversal (Centrality)

Top-down (scatter writes)

For each element of the frontier, touch the
neighbors.
Complexity: O(E )
Writes are scattered in memory

Bottom-up (gather reads)

For each vertex, are the neighbors in the
frontier?
Complexity O(ED), where D is the diameter
of the graph.
Writes are performed once linearly.

Direction Optimizing.

Level synchronous bfs.
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Traditionally ...

Vertex Centric

1 thread: 1 vertex

No graph coalescing

Vector read is not coalesced

No atomics

High divergence (high degree)
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Traditionally ...

Edge Centric

1 thread: 1 edge

Graph read is coalesced

Vector read is not coalesced

Many atomics

Little divergence (likely to have
adjacent thread doing the same
vertex)
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Virtual vertex decomposition

Virtual Vertex

1 thread: 1 virtual vertex

High degree vertices are split in multiple
”virtual vertices”

No graph coalescing

Vector read is not coalesced

Some atomics

Bounded divergence
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Strided virtual vertex decomposition

Virtual Vertex

1 thread: 1 virtual vertex

Some graph coalescing

Vector read is not coalesced

Some atomics

Bounded divergence
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Experimental Setting

Instances

Graph |V | |E | Avg |Γ(v)| Max |Γ(v)| Diam.

Amazon 403K 4,886K 12.1 2,752 19
Gowalla 196K 1,900K 9.6 14,730 12
Google 855K 8,582K 10.0 6,332 18
NotreDame 325K 2,180K 6.6 10,721 27
WikiTalk 2,388K 9,313K 3.8 100,029 10
Orkut 3,072K 234,370K 76.2 33,313 9
LiveJournal 4,843K 85,691K 17.6 20,333 15

Machines

2 Intel Sandybridge EP

NVIDIA K20

Metric

Traversed Edge Per Second: VE
time

.
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First results
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No vector coalescing
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All the representations give vector coalescing only “if you are lucky”
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Simultaneous sources traversal

The problem with previous methods is that BFS leaves the coalescing of the access to the
vector up to the structure of the graph.

Multiple sources

All threads of a warp should make
similar access pattern.

Since there are multiple traversals to
perform in a Centrality computation,
process B traversals at once.

If a vertex is in the same level of the
BFS in multiple traversal, they will be
processed at the same time.

Social networks have most vertices in
a few levels.
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An SpMV-based approach of BFS for Closeness Centrality

A simpler definition of level synchronous BFS

Vertex v is at level ℓ if and only if one of the neighbors of v is at level ℓ− 1 and v is not at
any level ℓ′ < ℓ.
Let xℓi = true if vertex i is a part of the frontier at level ℓ.
y ℓ+1 is the neighbors of level ℓ. y ℓ+1

k = ORj∈Γ(k)x
ℓ
j . ( (OR, AND)-SpMV )

Compute the next level frontier xℓ+1
i = y ℓ+1

i &¬(ORℓ′≤ℓx
ℓ′

i ).

Contribution of the source to cc[i ] is
xℓ
i

ℓ
.

It allows to compute Closeness Centrality by encoding the state of 32 traversal with an int.
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Impact on working warps
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Number of active warps necessary for 32 traversals. Small increase in the number of warps.
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Impact on non simultaneous traversal
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With B = 4, 32 traversals of one vertex are distributed in about 40% of 32 warps.
Good coalescing.
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Impact on Runtime
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On other architecture? Betweenness Centrality
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O(DE ) algorithms (GPU-) is unsuitable for NotreDame because of its high diameter.
CPU: 2 Intel Sandybridge EP (2x8 cores)
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On other architecture? Closeness Centrality
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Conclusion

Centrality

Betweenness and Closeness Centrality are
computed using multiple Breadth First
Search traversal.

Graph representation for GPU

Vertex Centric

Edge Centric

Virtual Vertex

Coalesced Virtual Vertex

Determine parallelism but also memory
access patterns and thread divergence.

Multiple traversals

Centrality requires graph traversal from
many different sources.

Threads of a warp can be set to
process different traversal for the same
decomposition.

Provided a vertex is used in the same
level in multiple traversals, all the
memory accesses can be coalesced.

Improves performance by a factor of 70x.
Adapts to CPU architecture for similar
effects.
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Thank you

Other centrality works (with Sarıyüce, Kaya and Çatalyürek)

Compression using graph properties (SDM 2013)

GPU optimization (GPGPU 2013)

Incremental algorithm (BigData 2013)

Distributed memory incremental framework (Cluster 2013, ParCo 2015)

Regularized memory accesses for CPU, GPU, Xeon Phi (MTAAP 2014, JPDC 2015)

More information

Contact : esaule@uncc.edu
Visit: http://webpages.uncc.edu/~esaule
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