

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

Anand P Santhanam

Assistant Professor, Department of Radiation Oncology

OUTLINE

- Adaptive radiotherapy for head and neck and lung cancer
- Key tools used for adaptive radiotherapy
 - 3D Deformable Image Registration (DIR)
 - Real-time 3D DIR
 - Physics-based modeling
 - Quantification of systematic errors in DIR
 - 3D Dose Calculation
 - Real-time non-voxel based dose calculation

RADIOTHERAPY

- Treatment for un-resectable tumors
- Procedure
 - Patient is already diagnosed with the type of cancer
 - A 3D/4D CT scan is acquired before the treatment
 - Clinical experts contour (or delineate) the tumor and surrounding critical organs
 - Appropriate radiation dose is planned
 - Max dose to the tumor
 - Min dose to the critical organs.
 - Patient is treated for sevaral days
 - 5-35 days

RESEARCH AIM & PURPOSE

Treatment Uncertainty

- Rigid Registration neglects soft tissue changes
- Daily MVCT image quality loss of detail and stratification
- Computational effort accurate DIR is time consuming

RESEARCH AIM & PURPOSE

Adaptive Therapy

- Calculate the dose delivered on deforming normal and diseased organs.
- Facilitate 3D structures for deforming anatomy.
- Effectively spare normal organs and tissues.
- Modify the dose delivered on subsequent fractions

ADAPTIVE RADIOTHERAPY

Accumulate Dose over Deformed Volumes

TOOLS FOR ADAPTIVE RADIOTHERAPY - 1

3D Image Registration

3D Biomechanical modeling

3D Dose Calculation

GPU BASED IMAGE REGISTRATION FOR ADAPTIVE RADIOTHERAPY

Max : 2.38 Average: 0.433 Std. Dev.: 0.664 ROI Voxels to Fail Criteria: 4.187 % 🔊 🖨 🗊 Volume Render: 40.4 fps Done Sampling Data... Voxels in ROI Min : -0.02 Max : 0.04 Jacobia Gamma Data: Average: 0.06 Week 1 Week 1 Std. Dev.: 0.6 Done Sampling Done Sampling Done Sampling Done Sampling Done Sampling Voxels in ROI: 746 (16.50 mL) Minimum: Maximum: 1.64 Done Sampling Average: 0.65 CENTROID CALCU 0.93 Total volume: ROI Voxels to Fail Criteria: 6.05 % Start: 543.00 Pos: -346.82 x Count: 199 x 1 INC: 0.54 x 0. COM: 1.22 x 50 Volume Change: /home/anand/De /home/anand/De: /home/anand/De /home/anand/De Select Scan CT to Display/Render: 1 /home/anand/Des /home/anand/Des Structure PTV1-Gamma Axials Render Gamma MAX (556.3,671 MIN (498.8,613 SIZE (99,99,24) Filling Contour Volume Grid: (13,13,3) Gzero: 919finished.

Free Memory: 2880421888 / 3220897792 Gzero: 54528

4D CT LUNG REGISTRATION

D. Thomas, et al., "A Novel Fast Helical 4D-CT Acquisition Technique ...," International Journal of Radiation Oncology*Biology*Physics. 2014

DEFORMABLE IMAGE REGISTRATION ACCURACY

- Registration error is typically quantified using manually placed landmarks
- Validation hampered by lack of ground truth data

SYSTEMATIC STUDY FOR DIR VALIDATION

- Registration parameters determined through exhaustive search.
- Validation:
 - Landmark based metric
 - Target Registration Error
 - Image based metrics
 - Mutual Information, Correlation Coefficient, Entropy Correlation Coefficient, DICE

SYSTEMATIC DEFORMATION

- 11 Head and Neck Patients were used in the study
- 6 levels of target volume reduction were examined
 - 0, 5, 10, 15, 20, and 30%
- 45 postures were created systematically at each volume reduction level
 - rotating the skull between 4 and -4 degrees along each axis.

PATIENT SPECIFIC MODEL GENERATION

Initializing the mass-springs

- Load DICOM CT
- Load DICOM RTSTRUCT
- Volume Filling Algorithm
- Assign elements to structures
- Establish spring-damper connections
- Set material properties

GPU BASED MASS-SPRING SYSTEM

- Create a uniform cell grid, assign each element a hash value based on cell ID
- Sort by hash using a fast radix algorithm
- Search a 5x5x5 cell neighborhood and establish connections as a 3x3x3 cube, creating 26 'springs' per element
- Record the rest lengths and orientations

MODEL ACTUATION

- Control the skeletal anatomy
 - 1 degree rotations about each axis
- Soft Tissue deforms due to elastic forces
- The color map illustrates areas of compression (blue) and strain (red)

VOLUME CHANGES – WEIGHT LOSS

- Volume can be adjusted manually by increasing or decreasing the rest length of the internal connections of a structure
- The update loop uses a two-pass system
 - First apply the internal structure forces
 - Second propagate changes to surrounding tissues

SYNTHETIC DATA CREATION

- Find the voxelized coordinates of each element after deformation
- Rotation and regression causes hole and aliasing artifacts
- Holes are addressed by ray-casting along each spring connection to fill holes
- Aliasing is addressed using a GPU based texture smoothing on edges
- Record the vector displacement of each element and the structure to which they belong
- Randomly select 100 elements from each structure for landmark analysis
 - Compare to registration results to find TRE

PARAMETER SEARCH

 From a set of manually placed landmarks, calculated the target registration error (TRE) for a spectrum of registration parameters.

- Error for kV->MV registration with 5 Levels, 1 Warp
- Default parameters:
 - Smoothing: 500
 - Levels: 5
 - Warps: 2
 - Iterations: 150

PARAMETER SEARCH

Similarly for kV->kV registrations

GROUND TRUTH REGISTRATION ACCURACY

2 Parameter optimization is convex

3 Parameter optimization is non-convex

GPU BASED COMPUTATIONS

GPU run time in dependence of the resolution levels and the solver iterations for a whole lung data (a) and separate lung data (b) on a NVIDIA GTX 680 GPU.

LANDMARK BASED DIR VALIDATION

Registration error by patient for head rotation of -4°, -2°, and -2° about the x, y, and z axes, respectively.

Error (mm)	PTV 1	Parotids	Mandible	Total
Patient 1	0.902	0.906	1.348	0.640
Patient 2	0.743	1.022	1.262	0.779
Patient 3	0.845	2.227	2.615	0.926
Patient 4	0.674	1.375	1.465	0.872
Patient 5	0.925	1.843	1.923	1.094
Patient 6	1.124	0.827	1.135	0.927
Patient 7	0.873	0.936	1.254	0.861
Patient 8	0.925	1.124	1.345	0.951
Patient 9	1.132	1.334	1.659	1.296
Patient 10	0.887	1.473	1.726	0.881

GPU BASED DOSE CALCULATION

Convolution/Superposition

$$Dose(v) = \int T'(v')H(\bar{\rho}_{v-v'}(v-v'))d^3v'$$

- Naïve impiementation
 - Port CPU algorithm directly
 - Calculate every voxel simultaneously
- Optimized Implementation
 - Coalesced Global memory data size invariability
 - Texture memory caching intrinsic linear interpolation
 - Shared memory utilization 20x to 30x shorter latencies than Global memory

UCLA Health

PERFORMANCE - GPU

PARALLELIZATION

Angular Sampling Combination (Zenithal x Azimuthal)

100x100 mm Field	64^3 Phantom 4 mm voxels	128^3 Phantom 2 mm voxels	256^3 Phantom 1 mm voxels
CPU / Naïve	59.26 1.66	113.2 1.75	193.7 12.76
Naïve / Optimized	1.46 0.04	4.82 0.135	21.6 0.576
CPU / Optimized	86.63 3.49	546.4 20.3	4,175.5 354.96

Health PERFORMANCE - SAMPLING + GPU

100x100 mm Field	64^3 Phantom 4 mm voxels	128^3 Phantom 2 mm voxels	256^3 Phantom 1 mm voxels
CPU / Naïve	2,100	4,100	8,200
CPU / Optimized	3,100	19,500	176,000

CONCLUSION

- Adaptive radiotherapy is made possible by GPU based algorithms.
 - 3D Deformable image registration
 - Head and neck X50 speed-up
 - Lungs X200 speed-up
 - 3D Biomechanical modeling for motion tracking
 - Head and neck No comparison
 - Lungs X200 speed-up
 - 3D Dose calculation
 - X4200 speed-up

ACKNOWLEDGEMENTS

- National Science Foundation
- Varian Inc
- US Office of Naval Research
- UCLA Radiation Oncology