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HIGH-QUALITY RASTERIZATION 



NEW RASTER METHODS USING MAXWELL 
Accumulative Anti-Aliasing (ACAA) 

A simple improvement on forward MSAA using less memory and bandwidth 

Aggregate Anti-Aliasing (AGAA) 

Create statistical aggregates from similar surfaces’ G-buffer samples 

Shade just once per aggregate, reducing shades per pixel and bandwidth costs 

Frustum-Traced Irregular Z-Buffer (FTIZB) 

A raster method to render ray traced quality, 32 sample-per-pixel hard shadows 

No spatial or temporal aliasing  



COMMONALITIES 
High quality antialiasing 

8 samples or higher per pixel, lower cost than prior methods 

ACAA AGAA FTIZB 



COMMONALITIES 
High quality antialiasing 

8 samples or higher per pixel, lower cost than prior methods 

 

Leverage new Maxwell GPU features 

Fast geometry shader  (aka NV_geometry_shader_passthrough) 

Target independent raster  (aka NV_framebuffer_mixed_samples) 

Post-depth coverage   (aka EXT_post_depth_coverage) 

Conservative rasterization (aka NV_conservative_raster) 

Sample mask override  (aka NV_sample_mask_override_coverage) 

 

 



   Work by:   

 Eric Enderton, Eric Lum, Christian Rouet,  

 and Oleg Kouznetsov 

Accumulative Anti-Aliasing 



WHAT IS ANTI-ALIASING? 

Usually:   

Sample multiple times per pixel 

Resolve to final color by appropriately weighting each color sample 

 

F = Σ wici 



ACCUMULATIVE  ANTI-ALIASING (ACAA) 

Key ACAA insight: 

If we pre-compute visibility (i.e., the weights), 

Only need to store one color per pixel (the accumulated color) 

 

Gives full MSAA quality using alpha blending 

 

F = Σ wici 



ACCUMULATIVE  ANTI-ALIASING (ACAA) 

Why don’t people already do this? 

MSAA weight depends on samples covered  

Not known in forward renderer until all geometry rendered 

 

ACAA does a z-prepass 

Precomputes visibility, storing the closest surface per sample 

During shading pass ask, “how many samples passed the z-test?” 

 

Requires shader to know post-z sample coverage 

New with Maxwell GPUs 
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EXAMPLE OF 8X ACAA 

Scene courtesy of Kishonti Informatics 



COMPARED TO 8X MSAA 

Scene courtesy of Kishonti Informatics 



ACAA ALGORITHM 
Z prepass at 8x 

Rasterize at 8x 

Shader uses post-z coverage to weight the fragment color 

Accumulate into 1x color buffer 

 

 

 Same image quality as MSAA (*) 

 Less memory (in color buffer) 

 Less bandwidth (to color buffer) 

 



ACAA BENEFITS 
Recovers most of the performance penalty of MSAA. 
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ACAA CAVEATS 
Assumes z test during shade passes only one fragment per sample 

Fails when z-fighting occurs 

Usually not an issue at 24-bit depths 

Stenciling or saturated alpha blend can solve 

 

Transparency is not handled 

 

Easily tested; part of NVIDIA GameWorks SDK: 

https://github.com/NVIDIAGameWorks/OpenGLSamples  

Sample called “Blended Antialising” 



   Work by:   

 Cyril Crassin, Morgan McGuire, Kayvon Fatahalian 

 and Aaron Lefohn 

Aggregate G-Buffer Anti-Aliasing 



Photograph by Johan Andersson 

  

The Mummy – [© Digital Domain / Rhythm&Hues] 
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High frequency shading is too costly  

Idea: Decouple shading rate from geometry 

Shade statistical geometry distributions 

OVERVIEW 



Pixel frustum 

Pixel 

Per-sample visibility 

and shading attributes 

Pixel frustum 

Aggregate 0 

Aggregate 1 

Aggregate 

shading 

High frequency shading is too costly  

Idea: Decouple shading rate from geometry 

Shade statistical geometry distributions 

Pixel frustum OVERVIEW 
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AGAA (2A) MSAA 8x Single-sampled 



AGAA (2A) MSAA 8x Single-sampled 



Simple/Complex [Lauritzen 2010] 

Segment image on per-pixel geometric complexity 

Shade per-pixel for simple, per-sample for complex 

Breaks when all pixels are complex 

Credit: Crytek [Sousa 2013] 

SIMILAR WORK 



Simple/Complex [Lauritzen 2010] 

Segment image on per-pixel geometric complexity 

Shade per-pixel for simple, per-sample for complex 

Breaks when all pixels are complex 

 

Surface Based Anti-Aliasing (SBAA) [Salvi 2012] 

Evaluate visibility per-sample in prepass 

Only store and shade N most important surfaces 

Discard other surfaces 

Credit: Crytek [Sousa 2013] 

SIMILAR WORK 
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SSAA 



Aggregate 

shading attributes 
Per-sample visibility 

and shading attributes 

Pixel frustum Pixel frustum 

Aggregate 0 

Aggregate 1 

Aggregate geometry in pixel-space before shading 

Per-sample visibility (via Z-prepass) 

Pre-filter shading attributes into aggregate g-buffer 

Filter & aggregate on the fly 

Inspired by texture pre-filtering 

Aggregates store: 

Normal distrib (NDF) & sub-pixel sample positions 

Average albedo, specular coef, emissive, other mat’l info 
 

AGAA OVERVIEW 
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RENDERING WITH AGGREGATES 



Light source 

Pixel frustum 

Assign each visibility sample to one aggregate: 

Allow for cross-primitive aggregates 

Allow for aggregates over disjoint surfaces 

 
Goal: Minimize errors from correlated attribs               
 [Bruneton and Neyret 2012] 

Prefer to cluster samples with similar normals 

Prefer to cluster samples with similar shadows 

Expensive to compute  

Approx. with distance metric, assuming low frequency shadows 
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AGGREGATE DEFINITION 



Similar to using filtered textures for inputs to shade 

AGAA is independent from the shading model 

Assumes model inputs are linearly filterable 

 

Prototype uses Blinn-Phong BRDF model 

Filtering specular component via Toksvig [Toksvig 2005] 

Analytic approx. from Toksvig for diffuse [Baker and Hill 2012] 
 

Shadowing must be filtered 

Account for aggregate depth extent 

Avoids temporal issues when sample’s cluster changes 
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DEFERRED SHADING 



Deferred 8x (reference) 



FXAA 



AGAA (1A) 

Shading events: 1 /Pixel Memory: 41 MB 



AGAA (2A) 

Shading events: 1.51 /Pixel Memory: 71 MB 



Shading events: 6.68 /Pixel (Simple/Complex)  

Deferred 8x (reference) 

Memory: 112 MB 



8x MSAA 

AGAA 2A 

AGAA 1A 

FXAA 



TODO:  Cut Cyril’s video down, insert here 

Maybe replace all the prior few quality slides with video? 

VIDEO 



TODO:  Cut Cyril’s video down, insert here 

Maybe replace all the prior few quality slides with video? 

VIDEO 



SPECULAR ALIASING 

AGAA (2A) 

16 

1 
SBAA (2S) 

16x MSAA 



RESULTS: PERFORMANCE 

Old City 

54% Faster rendering than Simple/Complex 
(2.84x Faster shading) 

EPIC UE3 Foliage Map 

74% Faster rendering than Simple/Complex 
(2.85x Faster shading) 

Deferred shading @8x MSAA  720p  -     Comparison with Simple/Complex [Lauritzen 2010]    -   NVIDIA GTX980 (Maxwell GM204) 
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Number of Aggregates /pixel 

AG-Buffer 
8x MSAA 16x MSAA 32x MSAA

RESULTS: MEMORY 

Compared with super sampled G-buffer 

Requires significantly less memory (37% less with 2 aggregates v.s. 8x MSAA) 



LIMITATIONS 

Assumes all materials use same model 

Not explored switching materials sub-pixel 

All shader inputs assumed filterable 

 

Normal precision issues using few aggregates 

Pixels with many prims & very different normal 

Use a single lobe Gaussian distribution 

Can cause some specular sparkling 

 

Correlation issues: 

Lit green foliage over shadowed red wall  

Both with 1 aggregate/ pixel 



   Work by:   

 Chris Wyman, Rama Hoetzlein, and Aaron Lefohn 

Frustum-Traced Irregular  

Z-Buffer Shadows 



Full scene, fully dynamic alias-free hard shadows 

Show 32 spp shadows are under 2x cost of 1 spp shadows  
 

Evolution of irregular z-buffering 

For modern game-quality and CAD-quality assets 

Builds on existing graphics hardware & pipeline 

Demonstrate efficient frustum intersection for 32 spp 
 

Key takeaway: 

Convert shadow map aliasing into irregular workload 

Identify and remove perf bottlenecks from this workload 

FEATURES 



Frustum-traced shadows 

8k filtered shadow map 

WHY? 

610k polys 
8.9 ms @ 1080p 

Still don’t have robust, high quality  
interactive hard shadow algorithm 



WHY? 
Filtering may be a harder problem than 
correctly sampling shadow 

610k polys 
8.9 ms @ 1080p 



WHAT’S WRONG WITH EXISTING SHADOWS? 
Consider a very simple scene w/ 3x3 image 

 



Consider a very simple scene w/ 3x3 image 

Samples in shadow map do not match 1:1 

Requires filter to reconstruct shadow signal 

May be from different surfaces 

Can miss geometry entirely 

 

WHAT’S WRONG WITH EXISTING SHADOWS? 



Does one of two things: 

Filter better   (e.g., [Peters15], [Donnelly06], [Fernando05]) 

Filtering is very hard; we still have problem antialiasing other signals 

Better match eye & light-space samples   (e.g., [Fernando01], [Stamminger02], [Lloyd08]) 

Perfect match impossible if requiring regular sampling in both eye & light space 

PRIOR WORK ON SHADOW MAPS 



Want to light only at eye-space samples! 

Will be irregular in light-space 

 

Ideally with sub-pixel accuracy! 
THE GOAL:  ALIAS-FREE SHADOWS 



Test triangle occlusion at these irregular sample points 

Ray trace   (e.g., [Whitted80], [Parker10], [Mittring14]) 

Query visibility at each ray, march through acceleration structure 

Shadow volumes   (e.g., [Crow77], [Sintorn14], [Gerhards15]) 

Test shadow quads to query if samples are in shadow 

Irregular z-buffer   (e.g., [Johnson05], [Sintorn08], [Pan09]) 

Rasterize over irregular sample points 

 

Converged on irregular z-buffering 

Why?   Allows us to leverage aspects of graphics pipe (e.g., culling) 

HOW TO DO THIS? 



A standard shadow  
map projection 

matrix 

WHAT IS AN IRREGULAR Z-BUFFER? 
Insert pixel samples (white dots) into light space grid at yellow samples 



Insert pixel samples (white dots) into light space grid at yellow samples 

Creates grid-of-lists data structure 

WHAT IS AN IRREGULAR Z-BUFFER? 



HOW DO YOU USE AN IZB? 
Rasterize from light view 

For each texel (partially) covered 

Walk through list of eye-space pixels Pi  

Test ray from Pi to the light 

Update visibility at Pi 

 

Store visibility for pixels Pi in eye-space buffer 

 



In simple cube example 

When rendering top of box to light space 

Partially covers texel containing a sample 

Analytically test visibility for list of samples 

This sample ends up unshadowed 

 

 

HOW DO YOU USE AN IZB? 



Each sample represents a pixel 

Pixel projects to some footprint on geometry 
 

When testing visibility 

Create frusta from light to pixel footprint 

Test if rasterized geometry intersects frusta 

 

 

ADDING MULTIPLE SAMPLES PER PIXEL 



Each sample represents a pixel 

Pixel projects to some footprint on geometry 
 

When testing visibility 

Create frusta from light to pixel footprint 

Test if rasterized geometry intersects frusta 
 

Discretize visibility sampling on quad 

Prototype uses 32 samples 

Developer specified (currently a lookup table) 

Each sample stores binary visibility 

 

 

 

ADDING MULTIPLE SAMPLES PER PIXEL 

Partially occludes 
footprint, giving  

¾ lit 
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Problem with Irregular Z-Buffering 



By construction: 

Introduce irregular workloads 

As variable-length light-space lists 

 

When rasterizing in light space 

Some frags test visibility of no pixels 

Some frags test at 1000’s of pixels 

 

Naïve implementation 

Leads to 100:1 variation in frame time 
Light-space visualization 
 
Intensity represents number 
of list elements per light 
space texel 

IRREGULARITY: BAD FOR GPU UTILIZATION 
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IZB Complexity Considerations 



Complexity is simple:  O( N ) 

N = # of frusta-triangle visibility tests  
 

More usefully, complexity is:  O( fls* Lavg ) 

fls = # of light-space fragments from rasterizer 

Lavg = average list length (i.e., # of pixels tested) 

 

For poorly utilized GPU, complexity is roughly:  O( fls* Lmax ) 

Lmax = # of pixels tested by slowest thread 

 

WHAT WORK ACTUALLY OCCURS? 



HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce the list length, Lavg. 

Reduce the variance, to reduce gap between Lmax  and Lavg. 

 



HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce number of occluder triangles 

Front/back face culling, z-culling, frustum culling, artistic culling 

 



HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce number of occluder triangles 

Front/back face culling, z-culling, frustum culling, artistic culling 

Reduce rasterized size of occluder triangles (i.e., change grid size) 

But this increases Lavg, Lmax, and other overheads; find the broad sweet spot per scene. 

 



HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce number of occluder triangles 

Reduce rasterized size of occluder triangles (i.e., change grid size) 
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Reduce rasterized size of occluder triangles (i.e., change grid size) 

Reduce the list length, Lavg. 

Reduce # of pixels inserted into IZB 

Z-prepass, skip N•L < 0, skip known lit pixels, avoid duplicates, use approx IZB insertion 

 



HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce number of occluder triangles 

Reduce rasterized size of occluder triangles (i.e., change grid size) 

Reduce the list length, Lavg. 

Reduce # of pixels inserted into IZB 

Z-prepass, skip N•L < 0, skip known lit pixels, avoid duplicates, use approx IZB insertion 

Remove fully shadowed pixels from IZB 

Gradually reduces Lavg and Lmax over the frame 
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HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce number of occluder triangles 

Reduce rasterized size of occluder triangles (i.e., change grid size) 

Reduce the list length, Lavg. 

Reduce # of pixels inserted into IZB 

Remove fully shadowed pixels from IZB 

Reduce the variance, to reduce gap between Lmax  and Lavg. 

Ideally:  match samples 1:1 between eye- & light-space  

The key goal for fast GPU implementation 

 

 

 



HOW TO REDUCE COST? 

Reduce the number of fragments, fls. 

Reduce number of occluder triangles 

Reduce rasterized size of occluder triangles (i.e., change grid size) 

Reduce the list length, Lavg. 

Reduce # of pixels inserted into IZB 

Remove fully shadowed pixels from IZB 

Reduce the variance, to reduce gap between Lmax  and Lavg. 

Ideally:  match samples 1:1 between eye- & light-space  

The key goal for fast GPU implementation 

We use cascaded irregular z-buffers 
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Miscellaneous 
Optimizations 



IZBs require conservative rasterization 

Maxwell hardware conservative raster:  up to 3x faster  

Samples may be anywhere 
in texel; triangles covering 

any part of texel may shadow 

GENERAL GPU OPTIMIZATIONS 



IZBs require conservative rasterization 

Maxwell hardware conservative raster:  up to 3x faster 
 

Memory contention / atomics are slower 

Only update visibility mask if change occurs  

Use implicit indices; skip global memory pools   

Structure traversal to avoid atomics   

 

GENERAL GPU OPTIMIZATIONS 



IZBs require conservative rasterization 

Maxwell hardware conservative raster:  up to 3x faster 
 

Memory contention / atomics are slower 

Only update visibility mask if change occurs  

Use implicit indices; skip global memory pools   

Structure traversal to avoid atomics   
 

List traversal induces long dependency chains 

Hide latency via software pipelining   

Avoid long latency operations (e.g., int divide, modulo) 
 

Reduce SIMD divergence 

Flatten control flow as much as possible  

 

 

GENERAL GPU OPTIMIZATIONS 



Results 
(All at 1080p on a GeForce GTX 980) 



Chalmers Villa 
89k polys 

 
HW Raster 

32 spp 4.5 ms 

1 spp 2.5 ms 

1 sample per pixel 

32 samples per pixel 



Epic Citadel 
374k polys 

 
HW Raster 

32 spp 6.8 ms 

1 spp 4.0 ms 



  

Bungie Terrain 
1.5M polys 

 
HW Raster 

32 spp 13.3 ms 

1 spp 8.4 ms 



 

UNC Powerplant 
12M polys 

 
HW Raster 

32 spp 38.2 ms 

1 spp 24.3 ms 



UNC Powerplant 
12M polys 

 
HW Raster 

32 spp 38.2 ms 

1 spp 24.3 ms 



FTIZB LIMITATIONS 

Requires an epsilon 

In world space, to avoid self shadows; roughly same as ray tracing 
 

Performance still variable (around 2x) 

We’re still working on this 
 

One approx used for performance for 32 spp shadows can break 

If using non-LoD, highly tessellated models in distance (i.e., not closest cascade) 
 

Some sub-pixel robustness tricks needed for 32 spp 



TALK SUMMARY 



CONCLUSION 

Presented 3 new high quality raster algorithms: 

ACAA improves MSAA for forward renderers 

AGAA reduces costs for higher sampling rates in a deferred renderer 

FTIZB renders smoothly anti-aliased hard shadows, avoiding shadow map sampling problems 

 

Leverage new Maxwell GPU features 

Post-z coverage, target independent raster, conservative raster, fast geometry shader 

 

These simple hardware changes open up many new and exciting algorithms! 



THANK YOU 

cwyman@nvidia.com  

@_cwyman_  



BACKUP SLIDES 



REDUCING NUMBER OF FRAGMENTS 

Reduce number of occluder triangles 

Front/back face culling  (we do this) 

Z-culling     (we do this, partially) 

Frustum culling    (we do not do this) 

Artistic direction   (we do not do this) 

 



REDUCING NUMBER OF FRAGMENTS 

Reduce number of occluder triangles 

Front/back face culling  (we do this) 

Z-culling     (we do this, partially) 

Frustum culling    (we do not do this) 

Artistic direction   (we do not do this) 

 

Reduce rasterized size of occluder triangles (i.e., change grid size) 

But this increases Lavg, Lmax, and other overheads 

A broad resolution “sweet spot” per scene for optimal 

 



REDUCING LIST LENGTH Lavg AND Lmax 

Reduce # of pixels inserted into IZB 

Use z-prepass to insert only visible pixels   (we do this) 

Skip known shadowed pixels ( N•L < 0 )   (we do this) 

Skip known lit pixels (e.g., artistic direction)   (we do not do this) 

Avoid duplicates nodes (e.g., when using 32spp) (we do this) 

For 32spp, use approximate insertion   (we do this; see paper) 

 

 



REDUCING LIST LENGTH Lavg AND Lmax 

Reduce # of pixels inserted into IZB 

Use z-prepass to insert only visible pixels   (we do this) 

Skip known shadowed pixels ( N•L < 0 )   (we do this) 

Skip known lit pixels (e.g., artistic direction)   (we do not do this) 

Avoid duplicates nodes (e.g., when using 32spp) (we do this) 

For 32spp, use approximate insertion   (we do this; see paper) 

 

Remove fully shadowed pixels from IZB 

Gradually reduces Lavg and Lmax over the frame  (we do this) 

 

 

 



REDUCING LIST LENGTH VARIANCE 

Causes Lmax → Lavg 

Ideally:  match samples 1:1 between eye- & light-space  

Same goal as perspective, logarithm, adaptive, and cascaded shadow maps 

The key goal for fast GPU implementation 

 

 

 



REDUCING LIST LENGTH VARIANCE 

Causes Lmax → Lavg 

Ideally:  match samples 1:1 between eye- & light-space  

Same goal as perspective, logarithm, adaptive, and cascaded shadow maps 

The key goal for fast GPU implementation 

Use these shadow map techniques    (we use cascades) 

Tightly bound light frustum to visible scene  (we do this) 

 

 

 

 


