
 CHRIS WYMAN

 SENIOR RESEARCH SCIENTIST, NVIDIA

HIGH-QUALITY RASTERIZATION

NEW RASTER METHODS USING MAXWELL
Accumulative Anti-Aliasing (ACAA)

A simple improvement on forward MSAA using less memory and bandwidth

Aggregate Anti-Aliasing (AGAA)

Create statistical aggregates from similar surfaces’ G-buffer samples

Shade just once per aggregate, reducing shades per pixel and bandwidth costs

Frustum-Traced Irregular Z-Buffer (FTIZB)

A raster method to render ray traced quality, 32 sample-per-pixel hard shadows

No spatial or temporal aliasing

COMMONALITIES
High quality antialiasing

8 samples or higher per pixel, lower cost than prior methods

ACAA AGAA FTIZB

COMMONALITIES
High quality antialiasing

8 samples or higher per pixel, lower cost than prior methods

Leverage new Maxwell GPU features

Fast geometry shader (aka NV_geometry_shader_passthrough)

Target independent raster (aka NV_framebuffer_mixed_samples)

Post-depth coverage (aka EXT_post_depth_coverage)

Conservative rasterization (aka NV_conservative_raster)

Sample mask override (aka NV_sample_mask_override_coverage)

 Work by:

 Eric Enderton, Eric Lum, Christian Rouet,

 and Oleg Kouznetsov

Accumulative Anti-Aliasing

WHAT IS ANTI-ALIASING?

Usually:

Sample multiple times per pixel

Resolve to final color by appropriately weighting each color sample

F = Σ wici

ACCUMULATIVE ANTI-ALIASING (ACAA)

Key ACAA insight:

If we pre-compute visibility (i.e., the weights),

Only need to store one color per pixel (the accumulated color)

Gives full MSAA quality using alpha blending

F = Σ wici

ACCUMULATIVE ANTI-ALIASING (ACAA)

Why don’t people already do this?

MSAA weight depends on samples covered

Not known in forward renderer until all geometry rendered

ACAA does a z-prepass

Precomputes visibility, storing the closest surface per sample

During shading pass ask, “how many samples passed the z-test?”

Requires shader to know post-z sample coverage

New with Maxwell GPUs

POST-Z COVERAGE

0% culled

25%

75%

z

z

z

z

EXAMPLE OF 8X ACAA

Scene courtesy of Kishonti Informatics

COMPARED TO 8X MSAA

Scene courtesy of Kishonti Informatics

ACAA ALGORITHM
Z prepass at 8x

Rasterize at 8x

Shader uses post-z coverage to weight the fragment color

Accumulate into 1x color buffer

 Same image quality as MSAA (*)

 Less memory (in color buffer)

 Less bandwidth (to color buffer)

ACAA BENEFITS
Recovers most of the performance penalty of MSAA.

4x

8x

1.00	
1.31	

1.59	
1.85	

2.24	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

4x	 8x	

1x	

ACAA	

MSAA	

Memory required Rendering cost

ACAA CAVEATS
Assumes z test during shade passes only one fragment per sample

Fails when z-fighting occurs

Usually not an issue at 24-bit depths

Stenciling or saturated alpha blend can solve

Transparency is not handled

Easily tested; part of NVIDIA GameWorks SDK:

https://github.com/NVIDIAGameWorks/OpenGLSamples

Sample called “Blended Antialising”

 Work by:

 Cyril Crassin, Morgan McGuire, Kayvon Fatahalian

 and Aaron Lefohn

Aggregate G-Buffer Anti-Aliasing

Photograph by Johan Andersson

The Mummy – [© Digital Domain / Rhythm&Hues]

MOTIVATION

Pixel

P
h

o
to

g
ra

p
h

 ©
 d

i9
.i
n

High frequency shading is too costly

Idea: Decouple shading rate from geometry

Shade statistical geometry distributions

OVERVIEW

Pixel frustum

Pixel

Per-sample visibility

and shading attributes

Pixel frustum

Aggregate 0

Aggregate 1

Aggregate

shading

High frequency shading is too costly

Idea: Decouple shading rate from geometry

Shade statistical geometry distributions

Pixel frustum OVERVIEW

8

1

AGAA (2A) MSAA 8x Single-sampled

AGAA (2A) MSAA 8x Single-sampled

Simple/Complex [Lauritzen 2010]

Segment image on per-pixel geometric complexity

Shade per-pixel for simple, per-sample for complex

Breaks when all pixels are complex

Credit: Crytek [Sousa 2013]

SIMILAR WORK

Simple/Complex [Lauritzen 2010]

Segment image on per-pixel geometric complexity

Shade per-pixel for simple, per-sample for complex

Breaks when all pixels are complex

Surface Based Anti-Aliasing (SBAA) [Salvi 2012]

Evaluate visibility per-sample in prepass

Only store and shade N most important surfaces

Discard other surfaces

Credit: Crytek [Sousa 2013]

SIMILAR WORK

SBAA MSAA

[S
a

lv
i
2

0
1

2
]

SSAA

Aggregate

shading attributes
Per-sample visibility

and shading attributes

Pixel frustum Pixel frustum

Aggregate 0

Aggregate 1

Aggregate geometry in pixel-space before shading

Per-sample visibility (via Z-prepass)

Pre-filter shading attributes into aggregate g-buffer

Filter & aggregate on the fly

Inspired by texture pre-filtering

Aggregates store:

Normal distrib (NDF) & sub-pixel sample positions

Average albedo, specular coef, emissive, other mat’l info

AGAA OVERVIEW

…

NDF

Mean albedo

Mean metal

AG-Buffer

P
ix

e
l

2xAA

[2x Aggregates]

Deferred
Shading

G-Buffer

…

Normal

Albedo

Metal

P
ix

e
l

[8x Samples]

8xAA

G-Buffer
Generation

Accumulate
Shading

Parameters
into

Aggregates

[8x Samples]

Depth
Prepass

P
ix

e
l

Depth

Framebuffer 8xAA

Early depth
testing

RENDERING WITH AGGREGATES

Convert Per-
Sample to

Aggregates

…

NDF

Mean albedo

Mean metal

AG-Buffer

P
ix

e
l

2xAA

[2x Aggregates]

Deferred
Shading

Accumulate
Shading

Parameters
into

Aggregates

[8x Samples]

Depth
Prepass

P
ix

e
l

Depth

Framebuffer 8xAA

Early depth
testing

Aggregate
Meta Data

[Per-pixel]

Assign
Samples to
Aggregates

 Face normal

RENDERING WITH AGGREGATES

Light source

Pixel frustum

Assign each visibility sample to one aggregate:

Allow for cross-primitive aggregates

Allow for aggregates over disjoint surfaces

Goal: Minimize errors from correlated attribs
 [Bruneton and Neyret 2012]

Prefer to cluster samples with similar normals

Prefer to cluster samples with similar shadows

Expensive to compute

Approx. with distance metric, assuming low frequency shadows

Aggregate
Meta Data

[Per-pixel]

Assign
Samples to
Aggregates

 Face normal

[8x Samples]

P
ix

e
l

Depth

Framebuffer 8xAA

Aggregate 1

Aggregate 0 Pixel frustum

AGGREGATE DEFINITION

Similar to using filtered textures for inputs to shade

AGAA is independent from the shading model

Assumes model inputs are linearly filterable

Prototype uses Blinn-Phong BRDF model

Filtering specular component via Toksvig [Toksvig 2005]

Analytic approx. from Toksvig for diffuse [Baker and Hill 2012]

Shadowing must be filtered

Account for aggregate depth extent

Avoids temporal issues when sample’s cluster changes

…

NDF

Mean albedo

Mean metal

AG-Buffer

Deferred
Shading

P
ix

e
l

2xAA

[2x Aggregates]

 Depth buffer

Shadow map

Pixel frustum

Aggregate 0

Aggregate 1

DEFERRED SHADING

Deferred 8x (reference)

FXAA

AGAA (1A)

Shading events: 1 /Pixel Memory: 41 MB

AGAA (2A)

Shading events: 1.51 /Pixel Memory: 71 MB

Shading events: 6.68 /Pixel (Simple/Complex)

Deferred 8x (reference)

Memory: 112 MB

8x MSAA

AGAA 2A

AGAA 1A

FXAA

TODO: Cut Cyril’s video down, insert here

Maybe replace all the prior few quality slides with video?

VIDEO

TODO: Cut Cyril’s video down, insert here

Maybe replace all the prior few quality slides with video?

VIDEO

SPECULAR ALIASING

AGAA (2A)

16

1
SBAA (2S)

16x MSAA

RESULTS: PERFORMANCE

Old City

54% Faster rendering than Simple/Complex
(2.84x Faster shading)

EPIC UE3 Foliage Map

74% Faster rendering than Simple/Complex
(2.85x Faster shading)

Deferred shading @8x MSAA 720p - Comparison with Simple/Complex [Lauritzen 2010] - NVIDIA GTX980 (Maxwell GM204)

37

63

77

89

31

52

59

66

28

46
50

54

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

%
 m

e
m

 r
e
la

ti
v
e
 t

o
 G

-B
u
ff

e
r

Number of Aggregates /pixel

AG-Buffer
8x MSAA 16x MSAA 32x MSAA

RESULTS: MEMORY

Compared with super sampled G-buffer

Requires significantly less memory (37% less with 2 aggregates v.s. 8x MSAA)

LIMITATIONS

Assumes all materials use same model

Not explored switching materials sub-pixel

All shader inputs assumed filterable

Normal precision issues using few aggregates

Pixels with many prims & very different normal

Use a single lobe Gaussian distribution

Can cause some specular sparkling

Correlation issues:

Lit green foliage over shadowed red wall

Both with 1 aggregate/ pixel

 Work by:

 Chris Wyman, Rama Hoetzlein, and Aaron Lefohn

Frustum-Traced Irregular

Z-Buffer Shadows

Full scene, fully dynamic alias-free hard shadows

Show 32 spp shadows are under 2x cost of 1 spp shadows

Evolution of irregular z-buffering

For modern game-quality and CAD-quality assets

Builds on existing graphics hardware & pipeline

Demonstrate efficient frustum intersection for 32 spp

Key takeaway:

Convert shadow map aliasing into irregular workload

Identify and remove perf bottlenecks from this workload

FEATURES

Frustum-traced shadows

8k filtered shadow map

WHY?

610k polys
8.9 ms @ 1080p

Still don’t have robust, high quality
interactive hard shadow algorithm

WHY?
Filtering may be a harder problem than
correctly sampling shadow

610k polys
8.9 ms @ 1080p

WHAT’S WRONG WITH EXISTING SHADOWS?
Consider a very simple scene w/ 3x3 image

Consider a very simple scene w/ 3x3 image

Samples in shadow map do not match 1:1

Requires filter to reconstruct shadow signal

May be from different surfaces

Can miss geometry entirely

WHAT’S WRONG WITH EXISTING SHADOWS?

Does one of two things:

Filter better (e.g., [Peters15], [Donnelly06], [Fernando05])

Filtering is very hard; we still have problem antialiasing other signals

Better match eye & light-space samples (e.g., [Fernando01], [Stamminger02], [Lloyd08])

Perfect match impossible if requiring regular sampling in both eye & light space

PRIOR WORK ON SHADOW MAPS

Want to light only at eye-space samples!

Will be irregular in light-space

Ideally with sub-pixel accuracy!
THE GOAL: ALIAS-FREE SHADOWS

Test triangle occlusion at these irregular sample points

Ray trace (e.g., [Whitted80], [Parker10], [Mittring14])

Query visibility at each ray, march through acceleration structure

Shadow volumes (e.g., [Crow77], [Sintorn14], [Gerhards15])

Test shadow quads to query if samples are in shadow

Irregular z-buffer (e.g., [Johnson05], [Sintorn08], [Pan09])

Rasterize over irregular sample points

Converged on irregular z-buffering

Why? Allows us to leverage aspects of graphics pipe (e.g., culling)

HOW TO DO THIS?

A standard shadow
map projection

matrix

WHAT IS AN IRREGULAR Z-BUFFER?
Insert pixel samples (white dots) into light space grid at yellow samples

Insert pixel samples (white dots) into light space grid at yellow samples

Creates grid-of-lists data structure

WHAT IS AN IRREGULAR Z-BUFFER?

HOW DO YOU USE AN IZB?
Rasterize from light view

For each texel (partially) covered

Walk through list of eye-space pixels Pi

Test ray from Pi to the light

Update visibility at Pi

Store visibility for pixels Pi in eye-space buffer

In simple cube example

When rendering top of box to light space

Partially covers texel containing a sample

Analytically test visibility for list of samples

This sample ends up unshadowed

HOW DO YOU USE AN IZB?

Each sample represents a pixel

Pixel projects to some footprint on geometry

When testing visibility

Create frusta from light to pixel footprint

Test if rasterized geometry intersects frusta

ADDING MULTIPLE SAMPLES PER PIXEL

Each sample represents a pixel

Pixel projects to some footprint on geometry

When testing visibility

Create frusta from light to pixel footprint

Test if rasterized geometry intersects frusta

Discretize visibility sampling on quad

Prototype uses 32 samples

Developer specified (currently a lookup table)

Each sample stores binary visibility

ADDING MULTIPLE SAMPLES PER PIXEL

Partially occludes
footprint, giving

¾ lit

57

Problem with Irregular Z-Buffering

By construction:

Introduce irregular workloads

As variable-length light-space lists

When rasterizing in light space

Some frags test visibility of no pixels

Some frags test at 1000’s of pixels

Naïve implementation

Leads to 100:1 variation in frame time
Light-space visualization

Intensity represents number
of list elements per light
space texel

IRREGULARITY: BAD FOR GPU UTILIZATION

59

IZB Complexity Considerations

Complexity is simple: O(N)

N = # of frusta-triangle visibility tests

More usefully, complexity is: O(fls* Lavg)

fls = # of light-space fragments from rasterizer

Lavg = average list length (i.e., # of pixels tested)

For poorly utilized GPU, complexity is roughly: O(fls* Lmax)

Lmax = # of pixels tested by slowest thread

WHAT WORK ACTUALLY OCCURS?

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce the list length, Lavg.

Reduce the variance, to reduce gap between Lmax and Lavg.

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Front/back face culling, z-culling, frustum culling, artistic culling

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Front/back face culling, z-culling, frustum culling, artistic culling

Reduce rasterized size of occluder triangles (i.e., change grid size)

But this increases Lavg, Lmax, and other overheads; find the broad sweet spot per scene.

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Reduce rasterized size of occluder triangles (i.e., change grid size)

Reduce the list length, Lavg.

Reduce the variance, to reduce gap between Lmax and Lavg.

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Reduce rasterized size of occluder triangles (i.e., change grid size)

Reduce the list length, Lavg.

Reduce # of pixels inserted into IZB

Z-prepass, skip N•L < 0, skip known lit pixels, avoid duplicates, use approx IZB insertion

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Reduce rasterized size of occluder triangles (i.e., change grid size)

Reduce the list length, Lavg.

Reduce # of pixels inserted into IZB

Z-prepass, skip N•L < 0, skip known lit pixels, avoid duplicates, use approx IZB insertion

Remove fully shadowed pixels from IZB

Gradually reduces Lavg and Lmax over the frame

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Reduce rasterized size of occluder triangles (i.e., change grid size)

Reduce the list length, Lavg.

Reduce # of pixels inserted into IZB

Remove fully shadowed pixels from IZB

Reduce the variance, to reduce gap between Lmax and Lavg.

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Reduce rasterized size of occluder triangles (i.e., change grid size)

Reduce the list length, Lavg.

Reduce # of pixels inserted into IZB

Remove fully shadowed pixels from IZB

Reduce the variance, to reduce gap between Lmax and Lavg.

Ideally: match samples 1:1 between eye- & light-space

The key goal for fast GPU implementation

HOW TO REDUCE COST?

Reduce the number of fragments, fls.

Reduce number of occluder triangles

Reduce rasterized size of occluder triangles (i.e., change grid size)

Reduce the list length, Lavg.

Reduce # of pixels inserted into IZB

Remove fully shadowed pixels from IZB

Reduce the variance, to reduce gap between Lmax and Lavg.

Ideally: match samples 1:1 between eye- & light-space

The key goal for fast GPU implementation

We use cascaded irregular z-buffers

70

Miscellaneous
Optimizations

IZBs require conservative rasterization

Maxwell hardware conservative raster: up to 3x faster

Samples may be anywhere
in texel; triangles covering

any part of texel may shadow

GENERAL GPU OPTIMIZATIONS

IZBs require conservative rasterization

Maxwell hardware conservative raster: up to 3x faster

Memory contention / atomics are slower

Only update visibility mask if change occurs

Use implicit indices; skip global memory pools

Structure traversal to avoid atomics

GENERAL GPU OPTIMIZATIONS

IZBs require conservative rasterization

Maxwell hardware conservative raster: up to 3x faster

Memory contention / atomics are slower

Only update visibility mask if change occurs

Use implicit indices; skip global memory pools

Structure traversal to avoid atomics

List traversal induces long dependency chains

Hide latency via software pipelining

Avoid long latency operations (e.g., int divide, modulo)

Reduce SIMD divergence

Flatten control flow as much as possible

GENERAL GPU OPTIMIZATIONS

Results
(All at 1080p on a GeForce GTX 980)

Chalmers Villa
89k polys

HW Raster

32 spp 4.5 ms

1 spp 2.5 ms

1 sample per pixel

32 samples per pixel

Epic Citadel
374k polys

HW Raster

32 spp 6.8 ms

1 spp 4.0 ms

Bungie Terrain
1.5M polys

HW Raster

32 spp 13.3 ms

1 spp 8.4 ms

UNC Powerplant
12M polys

HW Raster

32 spp 38.2 ms

1 spp 24.3 ms

UNC Powerplant
12M polys

HW Raster

32 spp 38.2 ms

1 spp 24.3 ms

FTIZB LIMITATIONS

Requires an epsilon

In world space, to avoid self shadows; roughly same as ray tracing

Performance still variable (around 2x)

We’re still working on this

One approx used for performance for 32 spp shadows can break

If using non-LoD, highly tessellated models in distance (i.e., not closest cascade)

Some sub-pixel robustness tricks needed for 32 spp

TALK SUMMARY

CONCLUSION

Presented 3 new high quality raster algorithms:

ACAA improves MSAA for forward renderers

AGAA reduces costs for higher sampling rates in a deferred renderer

FTIZB renders smoothly anti-aliased hard shadows, avoiding shadow map sampling problems

Leverage new Maxwell GPU features

Post-z coverage, target independent raster, conservative raster, fast geometry shader

These simple hardware changes open up many new and exciting algorithms!

THANK YOU

cwyman@nvidia.com

@_cwyman_

BACKUP SLIDES

REDUCING NUMBER OF FRAGMENTS

Reduce number of occluder triangles

Front/back face culling (we do this)

Z-culling (we do this, partially)

Frustum culling (we do not do this)

Artistic direction (we do not do this)

REDUCING NUMBER OF FRAGMENTS

Reduce number of occluder triangles

Front/back face culling (we do this)

Z-culling (we do this, partially)

Frustum culling (we do not do this)

Artistic direction (we do not do this)

Reduce rasterized size of occluder triangles (i.e., change grid size)

But this increases Lavg, Lmax, and other overheads

A broad resolution “sweet spot” per scene for optimal

REDUCING LIST LENGTH Lavg AND Lmax

Reduce # of pixels inserted into IZB

Use z-prepass to insert only visible pixels (we do this)

Skip known shadowed pixels (N•L < 0) (we do this)

Skip known lit pixels (e.g., artistic direction) (we do not do this)

Avoid duplicates nodes (e.g., when using 32spp) (we do this)

For 32spp, use approximate insertion (we do this; see paper)

REDUCING LIST LENGTH Lavg AND Lmax

Reduce # of pixels inserted into IZB

Use z-prepass to insert only visible pixels (we do this)

Skip known shadowed pixels (N•L < 0) (we do this)

Skip known lit pixels (e.g., artistic direction) (we do not do this)

Avoid duplicates nodes (e.g., when using 32spp) (we do this)

For 32spp, use approximate insertion (we do this; see paper)

Remove fully shadowed pixels from IZB

Gradually reduces Lavg and Lmax over the frame (we do this)

REDUCING LIST LENGTH VARIANCE

Causes Lmax → Lavg

Ideally: match samples 1:1 between eye- & light-space

Same goal as perspective, logarithm, adaptive, and cascaded shadow maps

The key goal for fast GPU implementation

REDUCING LIST LENGTH VARIANCE

Causes Lmax → Lavg

Ideally: match samples 1:1 between eye- & light-space

Same goal as perspective, logarithm, adaptive, and cascaded shadow maps

The key goal for fast GPU implementation

Use these shadow map techniques (we use cascades)

Tightly bound light frustum to visible scene (we do this)

