A

HIGH-QUALITY RASTERIZATION

CHRIS WYMAN

| SENIOR RESEARCH SCIENTIST, NVIDIA

v A

NEW RASTER METHODS USING MAXWELL

» Accumulative Anti-Aliasing (ACAA)

A simple improvement on forward MSAA using less memory and bandwidth

» Aggregate Anti-Aliasing (AGAA)

> Create statistical aggregates from similar surfaces’ G-buffer samples
Shade just once per aggregate, reducing shades per pixel and bandwidth costs

» Frustum-Traced Irregular Z-Buffer (FTIZB)

A raster method to render ray traced quality, 32 sample-per-pixel hard shadows
No spatial or temporal aliasing

COMMONALITIES

» High quality antialiasing

» 8 samples or higher per pixel, lower cost than prior methods

COMMONALITIES

> High quality antialiasing

» 8 samples or higher per pixel, lower cost than prior methods

» Leverage new Maxwell GPU features
Fast geometry shader (aka NV_geometry_shader_passthrough)
Target independent raster (aka NV_framebuffer_mixed_samples)

Conservative rasterization

(

Post-depth coverage (aka EXT_post_depth_coverage)
(aka NV_conservative_raster)
(

Sample mask override aka NV_sample_mask_override_coverage)

A

Accumulative Anti-Aliasing

Work by:

Eric Enderton, Eric Lum, Christian Rouet,
A and Oleg Kouznetsov

v A

WHAT IS ANTI-ALIASING?

F = Z W]-C]-

» Usually:
> Sample multiple times per pixel

> Resolve to final color by appropriately weighting each color sample

ACCUMULATIVE ANTI-ALIASING (ACAA)

F = Z WiCi

> Key ACAA insight:
> If we pre-compute visibility (i.e., the weights),

> 0Only need to store one color per pixel (the accumulated color)

» Gives full MSAA quality using alpha blending

ACCUMULATIVE ANTI-ALIASING (ACAA)

» Why don’t people already do this?
> MSAA weight depends on samples covered
Not known in forward renderer until all geometry rendered

» ACAA does a z-prepass
Precomputes visibility, storing the closest surface per sample
During shading pass ask, “how many samples passed the z-test?”

» Requires shader to know post-z sample coverage
» New with Maxwell GPUs

POST-Z COVERAGE

O culled 0%
e
%) O
O O 25%
5 5 °
O O
@) @ 0
O ® e ° 75%

1CS

1 Informat

shont

..KI
Y—
e

>
(7]
()
-
[
=
(@)
(®)
()
(e
Q
Q
wvY

ACAA ALGORITHM

» L prepass at 8x
> Rasterize at 8x

Shader uses post-z coverage to weight the fragment color
Accumulate into 1x color buffer

- Same image quality as MSAA (*)
- Less memory (in color buffer)
- Less bandwidth (to color buffer)

ACAA BENEFITS

» Recovers most of the performance penalty of MSAA.

Memory required Rendering cost

ACAA CAVEATS

» Assumes z test during shade passes only one fragment per sample
Fails when z-fighting occurs
Usually not an issue at 24-bit depths
Stenciling or saturated alpha blend can solve

» Transparency is not handled

» Easily tested; part of NVIDIA GameWorks SDK:
https://github.com/NVIDIAGameWorks/OpenGLSamples
Sample called “Blended Antialising”

A

Aggregate G-Buffer Anti-Aliasing

Cyril Crassin, Morgan McGuire, Kayvon Fatahalian
A and Aaron Lefohn

v A

[3
-

‘0
)
=

- T B

o3
e

m.
>

=

nd
£
©
e
o
A

s

2

()

o,

|
>
S
e
| S
=
o
<
T

\1’[’!"‘. -

B —

urelp @ ydeiboloyd
- D ‘.,‘0.‘: - N

MOTIVATION

OVERVIEW

> High frequency shading is too costly
» ldea: Decouple shading rate from geometry

> Shade statistical geometry distributions

OVERVIEW

> High frequency shading is too costly
» |dea: Decouple shading rate from geometry

Shade statistical geometry distributions

MSAA 32x

AGAA 2A

e

4

T Mgt B e R e s
..-'.-.\'.-.-.-_'-'_.-.)
by
P a0 | -

5

SIMILAR WORK

» Simple/Complex [Lauritzen 2010]
> Segment image on per-pixel geometric complexity
Shade per-pixel for simple, per-sample for complex
Breaks when all pixels are complex

Credit: Crytek [Sousa 2013] AL 2T T

SIMILAR WORK

» Simple/Complex [Lauritzen 2010]
> Segment image on per-pixel geometric complexity
Shade per-pixel for simple, per-sample for complex
Breaks when all pixels are complex

» Surface Based Anti-Aliasing (SBAA) [Salvi 2012]

Evaluate visibility per-sample in prepass
Only store and shade N most important surfaces
Discard other surfaces

) &\

[Salvi 2012]

AGAA OVERVIEW

® Aggregate geometry in pixel-space before shading
® Per-sample visibility (via Z-prepass)
® Pre-filter shading attributes into aggregate g-buffer
® Filter & aggregate on the fly
® Inspired by texture pre-filtering

® Aggregates store:
® Normal distrib (NDF) & sub-pixel sample positions
® Average albedo, specular coef, emissive, other mat’l info

Pixel frustum

| S U R I |
Aggregate O
LI R B A |
Per:sample-visibility
andishading attributes

RENDERING WITH AGGREGATES

Framebuffer AA
N

*
ﬂ Depth
Prepass
\ [8x Samples]

/EE oepth

AG-Buffer

S

Accumulate
Sha

~—
|

Deferred

G-Buffer

X Paran .
Generation | @ Shading

[8x Samples] \ [2x Aggregates]

RENDERING WITH AGGREGATES

Framebuffer AA
[|
o moles
ﬂ Pregass Samples to Meta Data
| Aggregates
seres [Per-pixel]
\ [8x Samples]

AG-Buffer

Accumulate
Shading
Parameters
into
Aggregates

Deferred

Shading

[2x Aggregates]

AGGREGATE DEFINITION

» Assign each visibility sample to one aggregate:
» Allow for cross-primitive aggregates
Allow for aggregates over disjoint surfaces

+ Goal: Minimize errors from correlated attribs
[Bruneton and Neyret 2012]

» Prefer to cluster samples with similar normals
Prefer to cluster samples with similar shadows
Expensive to compute

> Approx. with distance metric, assuming low frequency shadows

Framebuffer AA

\

3

\ [8x Samples]

Assign

Samples to
Aggregates

Aggregate
Meta Data

[Per-pixel]

O Aggregate 0

Aggregate 1

Light source

DEFERRED SHADING

» Similar to using filtered textures for inputs to shade
AGAA is independent from the shading model
Assumes model inputs are linearly filterable

» Prototype uses Blinn-Phong BRDF model
Filtering specular component via Toksvig

Analytic approx. from Toksvig for diffuse

» Shadowing must be filtered
Account for aggregate depth extent
Avoids temporal issues when sample’s cluster changes

AG-Buffer

[~

Deferred
Shading

N [2x Aggregates]

Pixel frustum

¥ v
-

>y

Shadow map

“

Aggregate 0

| _., : __ Fﬁxmcr:,

v A 4
” ,....__: .nu

,,_.hu

)
:
.

)

<

X

e

o i
S o
i
)

&
T

o

IPixe

. -.- 1 Shading events

A1MB

L
L

Memory

1.51 /Pixel

ts

ing even

@
-
)

71MB

L
-

Memory

IX€l (Simple/Complex)

L]

6.68 /P

L]
-

.ﬂ u_ .__ Eﬁ..gﬂmﬂhr:,
.H i gﬂ.r % rlI '_h..-. :
1 d _:.._ j

II]&HHI i 4,

, &
!
5
>
o
@)
=
©
©
K
%)

L 112 MB -

demory

MSAA 32x SBAA (25)

AGAA (2A)

Old City (8x Zoom)

AGAA vs Deferred MSAA (Simple/Complex)

1280x736, 8x MSAA

NVIDIA GeForce GTX 980
Average performance:

AGAA, 2 aggregates: ~146 FPS
MSAA: ~125 FPS

SPECULAR ALIASING

RESULTS: PERFORMANCE

Old City EPIC UE3 Follage Map

54% Faster rendering than Simple/Complex 74% Faster rendering than Simple/Complex
(2.84x Faster shading) (2.85x Faster shading)

RESULTS: MEMORY

» Compared with super sampled G-buffer

Requires significantly less memory (37% less with 2 aggregates v.s. 8x MSAA)

AG-Buffer

=0—8x MSAA ——=16X MSAA =—a—32x MSAA
100

% /

70 63 66
/

50 + /‘/; 54

40 W 46

-

% mem relative to G-Buffer

20 28
10
0 '
1 4

2 3
Number of Aggregates /pixel

LIMITATIONS

» Assumes all materials use same model

Not explored switching materials sub-pixel

All shader inputs assumed filterable

» Normal precision issues using few aggregates
Pixels with many prims & very different normal
Use a single lobe Gaussian distribution

> Can cause some specular sparkling

» Correlation issues:

Lit green foliage over shadowed red wall

Frustum-Traced Irregular A
Z-Buffer Shadows

Work by:

| Chris Wyman, Rama Hoetzlein, and Aaron Lefohn

v A

FEATURES

» Full scene, fully dynamic alias-free hard shadows

- Show 32 spp shadows are under 2x cost of 1 spp shadows

» Evolution of irregular z-buffering

» For modern game-quality and CAD-quality assets
> Builds on existing graphics hardware & pipeline

> Demonstrate efficient frustum intersection for 32 spp

» Key takeaway:
» Convert shadow map aliasing into irregular workload

- Identify and remove perf bottlenecks from this workload

WHY?

Still don’t have robust, high quality
interactive hard shadow algorithm

==

=i

Frustum-traced shadews

4/ .~ __aall " ZEEN

e
S
|

610k polys 8k filtered shadow map
8.9 ms @ 1080p

WHY?

Filtering may be a harder problem than
correctly sampling shadow

610k polys
8.9 ms @ 1080p

WHAT’S WRONG WITH EXISTING SHADOWS?

> Consider a very simple scene w/ 3x3 image

WHAT’S WRONG WITH EXISTING SHADOWS?

» Consider a very simple scene w/ 3x3 image
> Samples in shadow map do not match 1:1

» Requires filter to reconstruct shadow signal

> May be from different surfaces

» Can miss geometry entirely

PRIOR WORK ON SHADOW MAPS

» Does one of two things:
~ Filter better (e.q., [Peters15] [Donnelly06] [Fernando05]

» Filtering is very hard; we still have problem antialiasing other signals
~ Better match eye & light-space samples (e.g., [Fernando01] [Stamminger02] [Lloyd08])

» Perfect match impossible if requiring regular sampling in both eye & light space

THE GOAL: ALIAS-FREE SHADOWS

Ideally with sub-pixel accuracy!

> Want to light only at eye-space samples!

» Will be irregular in light-space

f—

4
il
!

TN

.
Vi

<L_-',A-
=y

/

HOW TO DO THIS?

» Test triangle occlusion at these irregular sample points
» Ray trace (e.g., [Whitted80], [Parker10], [Mittring14])

» Query visibility at each ray, march through acceleration structure
- Shadow volumes (e.q., [Crow77], [Sintorn14], [Gerhards15])

» Test shadow quads to query if samples are in shadow
- lrregular z-buffer (e.q., [Johnson05], [Sintorn08], [Pan09])

» Rasterize over irregular sample points

» Converged on irregular z-buffering

> Why? Allows us to leverage aspects of graphics pipe (e.g., culling)

WHAT IS AN IRREGULAR Z-BUFFER?

» Insert pixel samples (white dots) into light space grid at yellow samples

A standard shadow
map projection
matrix

WHAT IS AN IRREGULAR Z-BUFFER?

» Insert pixel samples (white dots) into light space grid at yellow samples

> Creates grid-of-lists data structure

HOW DO YOU USE AN IZB?

~ Rasterize from light view

> For each texel (partially) covered
> Walk through list of eye-space pixels P,
> Test ray from P, to the light
» Update visibility at P,

» Store visibility for pixels P; in eye-space buffer

P;

HOW DO YOU USE AN IZB?

+ In simple cube example
> When rendering top of box to light space
> Partially covers texel containing a sample
> Analytically test visibility for list of samples
> This sample ends up unshadowed

ADDING MULTIPLE SAMPLES PER PIXEL

> Each sample represents a pixel
» Pixel projects to some footprint on geometry

» When testing visibility
» Create frusta from light to pixel footprint
» Test if rasterized geometry intersects frusta

ADDING MULTIPLE SAMPLES PER PIXEL

> Each sample represents a pixel
> Pixel projects to some footprint on geometry

» When testing visibility
» Create frusta from light to pixel footprint
» Test if rasterized geometry intersects frusta

» Discretize visibility sampling on quad
> Prototype uses 32 samples
» Developer specified (currently a lookup table)
» Each sample stores binary visibility

Partially occludes
footprint, giving

Problem with Irregular Z-Buffering

\

»

!

I

A

AR

A,

IV
BN

ANNNNNNNNNRRE

ANNNNNNNNNNR

BRI

SLNRERRRER

IRREGULARITY: BAD FOR GPU UTILIZATION

» By construction:
> Introduce irregular workloads
> As variable-length light-space lists

» When rasterizing in light space
> Some frags test visibility of no pixels
> Some frags test at 1000’s of pixels

» Naive implementation
» Leads to 100:1 variation in frame time

& Light-space visualization

Intensity represents number
of list elements per light
space texel

(AR

i
AN
ANANNNNNNNRNRRT

i
i
BTN

L
m%%gmzz_
R

RN S S
B E AN OTS

IZB Complexity Considerations

WHAT WORK ACTUALLY OCCURS?

» Complexity is simple: O(N)
» N = # of frusta-triangle visibility tests

> More usefully, complexity is: O(f* L
» fo = # of light-space fragments from rasterizer

avg)

avg = average list length (i.e., # of pixels tested)

» For poorly utilized GPU, complexity is roughly: O(f*L

> Lnax = # of pixels tested by slowest thread

max)

HOW TO REDUCE COST?

» Reduce the number of fragments, f,.
» Reduce the list length, L
» Reduce the variance, to reduce gap between L

avg*

and L

max avg.

HOW TO REDUCE COST?

» Reduce the number of fragments, f,.
» Reduce number of occluder triangles

» Front/back face culling, z-culling, frustum culling, artistic culling

HOW TO REDUCE COST?

» Reduce the number of fragments, f,.
» Reduce number of occluder triangles

» Front/back face culling, z-culling, frustum culling, artistic culling
» Reduce rasterized size of occluder triangles (i.e., change grid size)

> But this increases L, ,, L., and other overheads; find the broad sweet spot per scene.

HOW TO REDUCE COST?

» Reduce the list length, L
» Reduce the variance, to reduce gap between L

avg*

and L

max avg.

HOW TO REDUCE COST?

» Reduce the list length, L

» Reduce # of pixels inserted into 1ZB

avg*

» Z-prepass, skip NeL < 0, skip known lit pixels, avoid duplicates, use approx IZB insertion

HOW TO REDUCE COST?

> Reduce the list length, L.
» Reduce # of pixels inserted into 1ZB

» Z-prepass, skip NeL < 0, skip known lit pixels, avoid duplicates, use approx IZB insertion
» Remove fully shadowed pixels from IZB

» Gradually reduces L,,,and L, ,, over the frame

HOW TO REDUCE COST?

> Reduce the variance, to reduce gap between L., and L,

HOW TO REDUCE COST?

» Reduce the number of fragments, f,.

» Reduce number of occluder triangles

» Reduce rasterized size of occluder triangles (i.e., change grid size)
> Reduce the list length, L,,,.

» Reduce # of pixels inserted into IZB

» Remove fully shadowed pixels from |ZB

> Reduce the variance, to reduce gap between L,, and L,

maXx
» ldeally: match samples 1:1 between eye- & light-space

» The key goal for fast GPU implementation

HOW TO REDUCE COST?

» Reduce the number of fragments, f,.

» Reduce number of occluder triangles

» Reduce rasterized size of occluder triangles (i.e., change grid size)
> Reduce the list length, L,,,.

» Reduce # of pixels inserted into IZB

» Remove fully shadowed pixels from |ZB

> Reduce the variance, to reduce gap between L,, and L,

maXx
» ldeally: match samples 1:1 between eye- & light-space
» The key goal for fast GPU implementation

» We use cascaded irregular z-buffers

Miscellaneous
Optimizations

GENERAL GPU OPTIMIZATIONS

» |ZBs require conservative rasterization

> Maxwell hardware conservative raster: up to 3x faster

Samples may be anywhere
in texel; triangles covering
any part of texel may shadow

GENERAL GPU OPTIMIZATIONS

» |ZBs require conservative rasterization

> Maxwell hardware conservative raster: up to 3x faster

» Memory contention / atomics are slower
> Only update visibility mask if change occurs
> Use implicit indices; skip global memory pools
> Structure traversal to avoid atomics

GENERAL GPU OPTIMIZATIONS

» |ZBs require conservative rasterization

> Maxwell hardware conservative raster: up to 3x faster

> Memory contention / atomics are slower
> Only update visibility mask if change occurs
> Use implicit indices; skip global memory pools
> Structure traversal to avoid atomics

» List traversal induces long dependency chains
- Hide latency via software pipelining
> Avoid long latency operations (e.g., int divide, modulo)

» Reduce SIMD divergence

» Flatten control flow as much as possible

Results
(All at 1080p on a GeForce GTX 980)

HW Raster
4.5 ms

2.5 ms

89k polys
32 spp

Chalmers Villa

N
il

\l M \/
W AN Y
W AN

w!

..si ‘

SRCHT o oy R
N SR B e
‘ . NS S
N W TN
2 Y (e _
| o
L —
TR K e — |/ E‘
s : 0 \ v S - -d‘l !’,
, 4 \
= A\q// N
{2 / gogy o RANY)
P 1 A

) ‘.’-

A
-
L

'32 san!ﬁgsli?_pi%l

Epic Citadel

374k polys | HW Raster

32spp | 6.8 ms

1 spp 4.0 ms

UNC Powerplant

12M polys HW Raster

32spp 38.2ms
1spp 24.3ms

UNC Powerplant

12M polys HW Raster

32spp 38.2ms
1spp 24.3ms

FTIZB LIMITATIONS

> Requires an epsilon

> |In world space, to avoid self shadows; roughly same as ray tracing

» Performance still variable (around 2x)

- We’re still working on this

» One approx used for performance for 32 spp shadows can break

»If using non-LoD, highly tessellated models in distance (i.e., not closest cascade)

» Some sub-pixel robustness tricks needed for 32 spp

TALK SUMMARY

CONCLUSION

» Presented 3 new high quality raster algorithms:
ACAA improves MSAA for forward renderers
AGAA reduces costs for higher sampling rates in a deferred renderer

FTIZB renders smoothly anti-aliased hard shadows, avoiding shadow map sampling problems

> Leverage new Maxwell GPU features

Post-z coverage, target independent raster, conservative raster, fast geometry shader

» These simple hardware changes open up many new and exciting algorithms!

THANK YOU

JOIN THE CONVERSATION
#GTC15 ¥ f B

A

cwyman@nvidia.com
@_cwyman_

BACKUP SLIDES

JOIN THE CONVERSATION
#GTC15 ¥ f B

v

REDUCING NUMBER OF FRAGMENTS

» Reduce number of occluder triangles

> Front/back face culling (we do this)

» Z-culling (we do this, partially)
> Frustum culling (we do not do this)
(

» Artistic direction we do not do this)

REDUCING NUMBER OF FRAGMENTS

» Reduce number of occluder triangles
» Front/back face culling (we do this)

- Z-culling (we do this, partially)
- Frustum culling (we do not do this)
»Artistic direction (we do not do this)

» Reduce rasterized size of occluder triangles (i.e., change grid size)
> But this increases L,,, L.y, and other overheads

» A broad resolution “sweet spot” per scene for optimal

REDUCING LIST LENGTH L,,, AND L.,

» Reduce # of pixels inserted into |ZB
» Use z-prepass to insert only visible pixels
- Skip known shadowed pixels (NeL < 0)
- Skip known lit pixels (e.g., artistic direction)
> Avoid duplicates nodes (e.g., when using 32spp)
> For 32spp, use approximate insertion

we do this)
we do this)

(
(
(we do not do this)
(we do this)

(

we do this; see paper)

REDUCING LIST LENGTH L,,, AND L.,

» Reduce # of pixels inserted into |ZB
» Use z-prepass to insert only visible pixels
- Skip known shadowed pixels (NeL < 0)
- Skip known lit pixels (e.g., artistic direction)
> Avoid duplicates nodes (e.g., when using 32spp)
> For 32spp, use approximate insertion

» Remove fully shadowed pixels from IZB

» Gradually reduces L, and L., over the frame

we do this)
we do this)

(
(
(we do not do this)
(we do this)

(

we do this; see paper)

(we do this)

REDUCING LIST LENGTH VARIANCE

» Causes L

max I—avg

> ldeally: match samples 1:1 between eye- & light-space

> Same goal as perspective, logarithm, adaptive, and cascaded shadow maps

> The key goal for fast GPU implementation

REDUCING LIST LENGTH VARIANCE

» Causes L

— I—av

max g

> ldeally: match samples 1:1 between eye- & light-space
> Same goal as perspective, logarithm, adaptive, and cascaded shadow maps
> The key goal for fast GPU implementation

- Use these shadow map techniques (we use cascades)
» Tightly bound light frustum to visible scene (we do this)

