
GTC 2015 | Mathias Wagner | Indiana University |

GPU vs Xeon Phi:
Performance of Bandwidth Bound Applications
with a Lattice QCD Case Study

Mathias Wagner

GTC 2015 | Mathias Wagner | Indiana University |

Lattice Quantum ChromoDynamics

and Deep Learning …

… sorry, not (yet?) here.

GTC 2015 | Mathias Wagner | Indiana University |

Lattice QCD: Some Basics

•QCD partition function

•4 dimensional grid (=Lattice)

•quarks live on lattice sites

•gluons live on the links

•typical sizes: 243 x 6 to 2564

•parallelization over lattice sites (105 to 109)

Formulating Lattice QCD

• Quark fields live on the lattice sites

• “spinors”

• 12 complex numbers

• Gluon fields live on the links

• SU(3) “Color matrices”

• 18 complex numbers

Friday, 11 March 2011

ZQCD (T, µ) =

Z
DAD�̄D�e�SE(T,µ)

includes integral over space and time

GTC 2015 | Mathias Wagner | Indiana University |

Staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix (Dslash) dominates (>80%)

GTC 2015 | Mathias Wagner | Indiana University |

Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 = A =

Friday, 11 March 2011

Staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix (Dslash) dominates (>80%)

•Highly Improved Staggered Quarks (HISQ) use next and 3rd neighbor stencil 
 
 
 
 

w
x

= D
x,x

0v
x

0 =
3

X

µ=0

hn

U
x,µ

v
x+µ̂

� U †
x�µ̂,µ

v
x�µ̂

o

+
n

N
x,µ

v
x+3µ̂ �N†

x�3µ̂,µvx�3µ̂

oi

GTC 2015 | Mathias Wagner | Indiana University |

Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 = A =

Friday, 11 March 2011

Staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix (Dslash) dominates (>80%)

•Highly Improved Staggered Quarks (HISQ) use next and 3rd neighbor stencil 
 
 
 
 

w
x

= D
x,x

0v
x

0 =
3

X

µ=0

hn

U
x,µ

v
x+µ̂

� U †
x�µ̂,µ

v
x�µ̂

o

+
n

N
x,µ

v
x+3µ̂ �N†

x�3µ̂,µvx�3µ̂

oi

complex 3x3 matrix 
72 byte for fp32

complex 3x3 matrix + U(3) symmetry 
56 byte for fp32

complex 3-dim vector 
24 byte for fp32
complex 3-dim vector 
24 byte for fp32

GTC 2015 | Mathias Wagner | Indiana University |

Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 = A =

Friday, 11 March 2011

Staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix (Dslash) dominates (>80%)

•Highly Improved Staggered Quarks (HISQ) use next and 3rd neighbor stencil 
 
 
 
 

•each site (x) loads 1024 bytes for links and 384 bytes for vectors, stores 24 bytes: total 1432 bytes / site

•performs 1146 flop: arithmetic intensity: 0.8 flop/byte

w
x

= D
x,x

0v
x

0 =
3

X

µ=0

hn

U
x,µ

v
x+µ̂

� U †
x�µ̂,µ

v
x�µ̂

o

+
n

N
x,µ

v
x+3µ̂ �N†

x�3µ̂,µvx�3µ̂

oi

complex 3x3 matrix 
72 byte for fp32

complex 3x3 matrix + U(3) symmetry 
56 byte for fp32

complex 3-dim vector 
24 byte for fp32
complex 3-dim vector 
24 byte for fp32

GTC 2015 | Mathias Wagner | Indiana University |

Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 = A =

Friday, 11 March 2011

Staggered Fermion Matrix (Dslash)

•Krylov space inversion of fermion matrix dominates runtime

•within inversion application of sparse Matrix (Dslash) dominates (>80%)

•Highly Improved Staggered Quarks (HISQ) use next and 3rd neighbor stencil 
 
 
 
 

•each site (x) loads 1024 bytes for links and 384 bytes for vectors, stores 24 bytes: total 1432 bytes / site

•performs 1146 flop: arithmetic intensity: 0.8 flop/byte
sensitive to memory bandwidth

w
x

= D
x,x

0v
x

0 =
3

X

µ=0

hn

U
x,µ

v
x+µ̂

� U †
x�µ̂,µ

v
x�µ̂

o

+
n

N
x,µ

v
x+3µ̂ �N†

x�3µ̂,µvx�3µ̂

oi

complex 3x3 matrix 
72 byte for fp32

complex 3x3 matrix + U(3) symmetry 
56 byte for fp32

complex 3-dim vector 
24 byte for fp32
complex 3-dim vector 
24 byte for fp32

GTC 2015 | Mathias Wagner | Indiana University |

Accelerators

Sorry, not the ones with liquid helium cooling and TDP > 300W.

GTC 2015 | Mathias Wagner | Indiana University |

Intel Xeon Phi and Nvidia Tesla

5110 7120 K20 K20X K40
Cores / SMX 60 61 13 14 15

Vector instructions 512 bit (16 fp32)
CUDA cores / SMX 192

 Clock Speed [MHz] 1053 1238 - 1333 705 732 745-875
 peak fp32 [TFlop/s] 2.02 2.42 3.52 3.91 4.29
 peak fp64 [TFlop/s] 1.01 1.21 1.27 1.31 1.43

 Memory [GB] 8 8 5 6 12
 Memory Bandwidth [GB/s] 320 352 208 250 288
 L1 Cache [kB] / (Core/SMX)

[kB]
32 16-48 + 48 (Texture)

 L2 Cache [MB] 30 (60 x 0.5) 30.5 (61 x 0.5) 1.5
 TDP [W] 225 300 225 235 235

GTC 2015 | Mathias Wagner | Indiana University |

Intel Xeon Phi and Nvidia Tesla

5110 7120 K20 K20X K40
Cores / SMX 60 61 13 14 15

Vector instructions 512 bit (16 fp32)
CUDA cores / SMX 192

 Clock Speed [MHz] 1053 1238 - 1333 705 732 745-875
 peak fp32 [TFlop/s] 2.02 2.42 3.52 3.91 4.29
 peak fp64 [TFlop/s] 1.01 1.21 1.27 1.31 1.43

 Memory [GB] 8 8 5 6 12
 Memory Bandwidth [GB/s] 320 352 208 250 288
 L1 Cache [kB] / (Core/SMX)

[kB]
32 16-48 + 48 (Texture)

 L2 Cache [MB] 30 (60 x 0.5) 30.5 (61 x 0.5) 1.5
 TDP [W] 225 300 225 235 235

How can we achieve this
performance?

GTC 2015 | Mathias Wagner | Indiana University |

Intel Xeon Phi and Nvidia Tesla

5110 7120 K20 K20X K40
Cores / SMX 60 61 13 14 15

Vector instructions 512 bit (16 fp32)
CUDA cores / SMX 192

 Clock Speed [MHz] 1053 1238 - 1333 705 732 745-875
 peak fp32 [TFlop/s] 2.02 2.42 3.52 3.91 4.29
 peak fp64 [TFlop/s] 1.01 1.21 1.27 1.31 1.43

 Memory [GB] 8 8 5 6 12
 Memory Bandwidth [GB/s] 320 352 208 250 288
 L1 Cache [kB] / (Core/SMX)

[kB]
32 16-48 + 48 (Texture)

 L2 Cache [MB] 30 (60 x 0.5) 30.5 (61 x 0.5) 1.5
 TDP [W] 225 300 225 235 235

How can we achieve this
performance?

How can we saturate
the available
bandwidth?

GTC 2015 | Mathias Wagner | Indiana University |

Intel Xeon Phi and Nvidia Tesla

5110 7120 K20 K20X K40
Cores / SMX 60 61 13 14 15

Vector instructions 512 bit (16 fp32)
CUDA cores / SMX 192

 Clock Speed [MHz] 1053 1238 - 1333 705 732 745-875
 peak fp32 [TFlop/s] 2.02 2.42 3.52 3.91 4.29
 peak fp64 [TFlop/s] 1.01 1.21 1.27 1.31 1.43

 Memory [GB] 8 8 5 6 12
 Memory Bandwidth [GB/s] 320 352 208 250 288
 L1 Cache [kB] / (Core/SMX)

[kB]
32 16-48 + 48 (Texture)

 L2 Cache [MB] 30 (60 x 0.5) 30.5 (61 x 0.5) 1.5
 TDP [W] 225 300 225 235 235

How can we achieve this
performance?

How can we saturate
the available
bandwidth?

How much energy does
that require?

GTC 2015 | Mathias Wagner | Indiana University |

Setting the bar

What performance can we expect on the different accelerators?

Is our code optimized?

GTC 2015 | Mathias Wagner | Indiana University |

Estimated Dslash Performance

•naive model: 
bandwidth times arithmetic intensity

Dslash performance ECC

G
Fl

op
/s

0

100

200

300

5110 7120 K20 K40

estimate (peak bw)
estimate (triad bw)
measured

GTC 2015 | Mathias Wagner | Indiana University |

Estimated Dslash Performance

•naive model: 
bandwidth times arithmetic intensity

•better use STREAM triad bandwidth

Dslash performance ECC

G
Fl

op
/s

0

100

200

300

5110 7120 K20 K40

estimate (peak bw)
estimate (triad bw)
measured

M
em

or
y

Ba
nd

w
id

th
 [G

B/
s]

100

200

300

400

5110 7120 K20 K40

theoretical triad triad ECC

GTC 2015 | Mathias Wagner | Indiana University |

Estimated Dslash Performance

•naive model: 
bandwidth times arithmetic intensity

•better use STREAM triad bandwidth

Dslash performance ECC

G
Fl

op
/s

0

100

200

300

5110 7120 K20 K40

estimate (peak bw)
estimate (triad bw)
measured

M
em

or
y

Ba
nd

w
id

th
 [G

B/
s]

100

200

300

400

5110 7120 K20 K40

theoretical triad triad ECC

GTC 2015 | Mathias Wagner | Indiana University |

Estimated Dslash Performance

•naive model: 
bandwidth times arithmetic intensity

•better use STREAM triad bandwidth

•faster than estimate from triad bandwidth

Dslash performance ECC

G
Fl

op
/s

0

100

200

300

5110 7120 K20 K40

estimate (peak bw)
estimate (triad bw)
measured

GTC 2015 | Mathias Wagner | Indiana University |

Estimated Dslash Performance

•naive model: 
bandwidth times arithmetic intensity

•better use STREAM triad bandwidth

•faster than estimate from triad bandwidth

Dslash performance ECC

G
Fl

op
/s

0

100

200

300

5110 7120 K20 K40

estimate (peak bw)
estimate (triad bw)
measured

account for existence of cache in estimate of performance

GTC 2015 | Mathias Wagner | Indiana University |

Caching for vectors

•for upper limit: assume cache hits are free  
bytes / site: 1024 x (1-hitrate) 384 + 24  
 
 

gauge field 16 vectors 
24 byte each

1 vectors 
output

GTC 2015 | Mathias Wagner | Indiana University |

Caching for vectors

•for upper limit: assume cache hits are free  
bytes / site: 1024 x (1-hitrate) 384 + 24  
 
 

Dslash performance ECC

G
Fl

op
/s

0

80

160

240

5110 7120 K20 K40

est. no cache
est. perfect cache
measured

gauge field 16 vectors 
24 byte each

1 vectors 
output

GTC 2015 | Mathias Wagner | Indiana University |

Caching for vectors

•for upper limit: assume cache hits are free  
bytes / site: 1024 x (1-hitrate) 384 + 24  
 
 

•Perfect caching scenario: hit for 15 out of 16 input vectors  
→ arithmetic intensity 1.07 (w/o cache 0.80)

Dslash performance ECC

G
Fl

op
/s

0

80

160

240

5110 7120 K20 K40

est. no cache
est. perfect cache
measured

gauge field 16 vectors 
24 byte each

1 vectors 
output

GTC 2015 | Mathias Wagner | Indiana University |

Caching for vectors

•for upper limit: assume cache hits are free  
bytes / site: 1024 x (1-hitrate) 384 + 24  
 
 

•Perfect caching scenario: hit for 15 out of 16 input vectors  
→ arithmetic intensity 1.07 (w/o cache 0.80)

•typical size of a vector: 323x8 → 3MB, 643x16 → 24MB

•KNL: ~30 MB L2 (512 kB / core) + 32kB L1 / core [60 cores]

•Kepler: 1.5MB L2+ (16-48) kB L1 / SMX [15 SMX]

Dslash performance ECC

G
Fl

op
/s

0

80

160

240

5110 7120 K20 K40

est. no cache
est. perfect cache
measured

gauge field 16 vectors 
24 byte each

1 vectors 
output

GTC 2015 | Mathias Wagner | Indiana University |

GPU Memory System

© 2013, NVIDIA 36

DRAM

L2

SM

L1
Read
only

Const

SM • Once in an SM, data
goes into one of 3
caches/buffers

• Programmer’s choice
– L1 is the “default”

– Read-only, Const
require explicit code

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

GTC 2015 | Mathias Wagner | Indiana University |

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

GTC 2015 | Mathias Wagner | Indiana University |

z-
di

re
ct

io
n

L1

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

GTC 2015 | Mathias Wagner | Indiana University |

z-
di

re
ct

io
n

L1

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

hit rate 0/16 15/16 3/16 5/16 7/16 9/16

arithmetic intensity 0.8 1.07 0.84 0.87 0.91 0.94

GTC 2015 | Mathias Wagner | Indiana University |

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

Dslash performance K40 ECC, 32x8

G
Fl

op
/s

100

170

240

0/1
6

3/1
6

5/1
6

7/1
6

9/1
6

15
/16

mea
su

redhit rate 0/16 15/16 3/16 5/16 7/16 9/16

arithmetic intensity 0.8 1.07 0.84 0.87 0.91 0.94

GTC 2015 | Mathias Wagner | Indiana University |

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

Dslash performance K40 ECC, 32x8

G
Fl

op
/s

100

170

240

0/1
6

3/1
6

5/1
6

7/1
6

9/1
6

15
/16

mea
su

redhit rate 0/16 15/16 3/16 5/16 7/16 9/16

arithmetic intensity 0.8 1.07 0.84 0.87 0.91 0.94

GTC 2015 | Mathias Wagner | Indiana University |

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

Dslash performance K40 ECC, 32x8

G
Fl

op
/s

100

170

240

0/1
6

3/1
6

5/1
6

7/1
6

9/1
6

15
/16

mea
su

redhit rate 0/16 15/16 3/16 5/16 7/16 9/16

arithmetic intensity 0.8 1.07 0.84 0.87 0.91 0.94

GTC 2015 | Mathias Wagner | Indiana University |

Try to get a better estimate (GPU focussed)

•Empirical: vectors through L1, links through texture

•ignore L2: also loads gauge field (128MB - 1024MB)

•48 kB L1 can hold 2048 24-byte vector elements

•for 643x16: 1 xy-plane (even-odd precondition) 
hit 7 out of 16 (43% hit rate)

•for 323x8: xy plane has 512 elements → 4 xy-planes 
in z direction we can hit 2 of 4 elements: 9/16 (56% hit rate)

Dslash performance K40 ECC, 32x8

G
Fl

op
/s

100

170

240

0/1
6

3/1
6

5/1
6

7/1
6

9/1
6

15
/16

mea
su

redhit rate 0/16 15/16 3/16 5/16 7/16 9/16

arithmetic intensity 0.8 1.07 0.84 0.87 0.91 0.94

profiler: L1 hit rate 44% (L2 7%)

GTC 2015 | Mathias Wagner | Indiana University |

Increasing the Intensity

Focus on the arithmetic intensity now … push ups later.

Cache effects for vectors but remember they are only ~25% of the memory traffic.

What can we do about the gauge links ?

GTC 2015 | Mathias Wagner | Indiana University |

HISQ Inverter for multiple right hand sides (rhs)

•combine multiple inversions with constant gauge field (constant sparse matrix) 
 

•reuse links (input for the sparse matrix) in the matrix-vector multiplication (Dslash) 
 

HISQ inverter on Intel R� Xeon PhiTM and NVIDIA R� GPUs
O. Kaczmarek(a), Swagato Mukherjee(b), C. Schmidt(a), P. Steinbrecher(a) and M. Wagner(c)

(a) Universität Bielefeld - Germany, (b) Brookhaven National Laboratory - USA, (c) Indiana University - USA

I. Introduction
Conserved charge fluctuations: For the analysis of QCD simulations one often needs
to perform many inversions of the Fermion Matrix for a constant gauge field. In finite tem-
perature QCD the calculation of the fluctuation of conserved charges, brayon number (B),
electric charge (Q) and strangeness (S) is such an example. Their calculation is particular
interesting as they can measured in experiments at RHIC and LHC and also be determined
from generalized susceptibilities in Lattice QCD:

�

BQS

mnk

(T) =
1

V T

3

@

m+n+k lnZ
@ (µ

B

/T)m @ (µ
Q

/T)n @ (µ
S

/T)k

�����
~µ=0

. (1)

The required derivatives w.r.t. the chemical potentials can be obtained by stochastically
estimating the traces with a su�ciently large number of random vectors ⌘, e.g.

Tr

✓
@

n1
M

@µ

n1
M

�1@
n2
M

@µ

n2
. . .M

�1

◆
= lim

N!1

1

N

NX

k=1

⌘

†
k

@

n1
M

@µ

n1
M

�1@
n2
M

@µ

n2
. . .M

�1
⌘

k

. (2)

For each random vector we need to perform several inversions of the Fermion Matrix, de-
pending on the highest degree of derivative we calculate. Typically we use 1500 random
vectors to estimate the traces on a single gauge configuration. To also reduce the gauge
noise we need between 5000 and 20000 gauge configurations for each temperature. The
generated data have been used for several investigations in the last years [1, 2, 3, 4].
For reasons of the numerical costs, staggered fermions are the most common type of fermions
for thermodynamic calculations on the lattice. We use the highly improved staggered fermion
(HISQ) action. It reduces the taste-splitting as much as possible. The HISQ action uses two
levels of fat7 (+ lepage) smearing and a Naik term. In terms of the smeared links X and
Naik links N the Dslash operator reads

w

x

= D

x,x

0
v

x

0 =
4X

µ=0

h⇣
X

x,µ

v

x+µ �X

†
x�µ,µ

v

x�µ

⌘
+
⇣
N

x,µ

v

x+3µ �N

†
x�3µ,µvx�3µ

⌘i
. (3)

Accelerators: In the Krylov solvers used for the inversion the application of the Dslash
operator is the dominating term. It typically consumes more than 80% of the runtime. It has
a low arithmetic intensity (Flop/byte ⇠0.73 for single precision). Hence the performance is
bound by the available memory bandwidth. These types of problems are well suitable for
accelerators as these currently o↵er memory bandwidths in the range of 200 � 400 GB/s
and with the use of stacked DRAM are expected to reach 1 TB/s in the next years. Still the
most important factor when tuning is to avoid memory access. A common optimization is
to exploit available symmetries and reconstruct the gauge links on the fly from 8 or 12 floats
instead of loading all 18 floats. For improved actions these symmetries are often broken. For
the HISQ action only the Naik-part can be reconstructed from 9 or 13/14 floats.
In the following we will discuss our implementation of the CG inverter for the HISQ action
on NVIDIA

R�
GPUs and the Intel

R�
Xeon Phi

TM

. The GPUs are based on the Kepler archi-
tecture as also used in the Titan supercomputer in Oak Ridge. The Xeon Phi is based on
the Knights Corner architecture as also used in Tianhe-2.

Phi
TM

5110P K20 K40 GTX Titan

Cores / SMX 60 13 15 14
(Threads/Core) / (Cores/SMX) 4 192 192 192
Clock Speed [MHz] 1053 706 745/810/875 837
L1 Cache / Core [KB] 32 16� 48 16� 48 16� 48
L2 Cache [MB] 30 1.5 1.5 1.5
Memory Size [GB] 8 5 12 6
peak fp32 [TFlop/s] 2.02 3.52 4.29 4.5
peak fp64 [TFlop/s] 1.01 1.17 1.43 1.5
Memory Bandwidth [GB/s] 320 208 288 288
TDP [W] 225 225 235 250

Tab. 1: Summary of the important technical data of the accelerators we have used in our benchmarks.

Conjugate gradient for multiple right hand sides: At 1500 random vectors for
the noisy estimators a large number of inversions are performed for a constant gauge field.
Grouping the random vectors in small bundles one can exploit the constant gauge field and
apply the Dslash for multiple right hand sides (rhs) at once:

⇣
w

(1)
x

, w

(2)
x

, . . . , w

(n)
x

⌘
= D

x,x

0

⇣
v

(1)
x

0 , v
(2)
x

0 , . . . , v
(n)
x

⌘
(4)

This increases the arithmetic intensity of the HISQ-Dslash as the loads for the gauge field
occur only once for the n rhs.

#rhs 1 2 3 4 5 6 8

Flop/byte (full) 0.73 1.16 1.45 1.65 1.80 1.91 2.08
Flop/byte (r14) 0.80 1.25 1.53 1.73 1.87 1.98 2.14

The numbers above are for single precision (fp32). The numbers for double precision (fp64)
di↵er by a factor of 2. Throughout the following we will only discuss single precision and also
neglect approaches like mixed precision. Increasing the number of rhs from 1 to 4 already
results in an improvement by a factor of more than 2. For even higher n the relative e↵ect
is less significant. In the limit n ! 1 the highest possible arithmetic intensity that can be
reached is ⇠ 2.75. At n = 8 we have reached already ⇠ 75% of the limiting peak intensity
while for 1 rhs we only obtain 25�30%. It is also obvious that for an increasing number
of gauge fields the memory tra�c caused by the loading of the gauge fields is no longer
dominating and the impact of reconstructing the Naik links reduces from ⇠10% for a single
rhs to ⇠ 3% for 8 rhs. The additional register pressure due to the reconstruction of the
gauge links might then also result in a lower performance. For the full conjugate gradient
the additional linear algebra does not allow for the reuse of any constant fields. The e↵ect
of the increased arithmetic intensity of the Dslash while therefore be less pronounced in the
full CG.

II. GPU
Architecture: NVIDIA’s current architecture for compute GPUs is called Kepler, the
corresponding chip GK110. The latest compute card, the Tesla K40, comes with a slightly
modified version GK110B and GPU Boost. The latter allows the user to run the GPU at
a higher core clock. As memory-bandwidth bound problems usually stay well within the
thermal and power envelopes the card is capable of constantly running at this higher clock
for Lattice QCD simulations. The memory clock remains constant and thus a performance
impact on bandwidth-bound applications is not obvious. However, the higher core clock al-
lows to better saturate the available bandwidth. We will only show results with the highest
possible core clock for the K40.

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64Ͳbit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

x The�new�SMX�processor�architecture�
x An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

x Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110’s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we’ve�built,�but�also�the�most�programmable�and�powerͲefficient.��

�

SMX:�192�singleͲprecision�CUDA�cores,�64�doubleͲprecision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

Fig. 1: The GK110 chip and one of its SMX processors [5].

The GK110 chip consists of several streaming multiprocessors (“SMX”). The number of
SMX depends on the card. Each SMX features 192 CUDA cores. Within a SMX they share
a configurable L1 cache / shared memory area and a 48KB read-only/texture cache. The
shared L2 cache for all SMX is relatively small with only 1.5MB.
GPU-Implementation: For a bandwidth-bound problem the memory layout and access
is crucial to achieve optimal performance. As GPUs have been used for several years to
accelerate LQCD simulations a lot of the techniques we used may be considered as standard
by now. We use a Structure of Arrays (SoA) memory layout for both the color vectors and
the gauge links. We reconstruct the Naik links from 14 floats. We observed best results by
loading the gauge links through the texture unit and the color vectors through the standard
load path (L1).
For the implementation of the Dslash for multiple rhs two approaches are possible. On the
GPU the obvious parallelization for the Dslash for one rhs is over the elements of the out-
put vector, i.e., each thread processes one element of the output vector. The first approach
(register-blocking) lets each thread multiply the already loaded gauge link to the corre-
sponding element of multiple right-hand sides. The thread thus generates the element for
one lattice site for several output vectors. This approach increases the number of registers
needed per thread and will result in a lower GPU occupancy or at some point spilling. Both
e↵ects will limit the achievable performance, while the latter is less likely as each thread can
use up to 255 registers for the Kepler architecture.
The second approach (texture cache blocking) is to let each thread process one element of
one output vector and group the threads into two-dimensional CUDA blocks with lattice
site x and rhs i. As one CUDA block is executed on one SMX this ensures temporal locality
for the gauge links in the texture cache. Ideally the gauge links only need to be loaded from
the global memory for one rhs. When the threads for the other rhs are executed they are
likely to obtain the gauge links from cache. This approach does not increase the register
pressure. Furthermore the total number of threads is increased by a factor n and this may
furthermore improve the overall GPU usage.
Both approaches can also be combined and the best possible solution is a question of tun-
ing. For our benchmarks we determine the optimal configuration for a given lattice size and
number of rhs for each GPU. Furthermore we employ an automatic tuning to select the
optimal launch configuration for the Dslash operation also depending on the GPU, lattice
size and number of rhs.
The remaining linear algebra-Kernels are kept separate for the di↵erent rhs. This allows us
to easily stop the solver for individual rhs that have already met the convergence criterion.
To hide latencies and allow for a better usage of the GPU we use separate CUDA streams
for each right hand side. We keep the whole solver on the GPU and only communicate the
set of residuals for all rhs at the end of each iteration.

III. MIC
Architecture: The Intel

R�
Xeon Phi

TM

is an in-order x86 based many-core processor [6].
The accelerator runs a Linux µOS and can have up to 61 cores combined via a bidirectional
ring (see figure 2). Therefore, the memory transfers are limited by concurrency reaching only
140 GB/s for a stream triad benchmark [7]. Each core has a private 32 KB L1 data and
instruction cache, as well as a global visible 512 KB L2 cache. In the case of an local L2
cache miss a core can cross-snoop another’s core L2 cache. If the needed data is present it
is send through the ring interconnect, thus avoiding a direct memory access.

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

PCIe

Fig. 2: Visualization of the bidirectional ring on the die. Each core has its own tag directory (TD) keeping
the cache hierarchy fully coherent. The dotted line illustrates the missing cores.

One core has thirty-two 512 bit zmm vector registers corresponding to any multiple of a
32/64 bit floating-point number or integer (see figure 3). The Many Integrated Core (MIC)
has its own SIMD instruction set extension IMIC with support for Fused Multiply Add
(FMA) and mask operations. Each core has 4 hardware context threads scheduled with a
round-robin algorithm delivering two executed instructions per cycle while running with at
least two threads per core. In order to fully utilize the MIC it is mostly required to run with
four threads per core. Especially for memory bound applications using four threads o↵ers
more flexibility to the processor to swap the context of a thread, which is currently stalled
by a cache miss. The MIC has support for streaming data directly into memory without
reading the original content of an entire cache line, thus bypassing the cache and increasing
the performance of algorithms where the memory footprint is too large for the cache [6].

Mask Registers:

Eight 16-bit k registers per core.

16 bits

150

Vector Registers:

Thirty-two 512-bit zmm registers per core.

16 floats

5112550

8 doubles

Instruction Decode

SPU VPU

Vector

Registers

Scalar

Registers

32KB Ins.

L1 Cache

512KB L2 Cache

32KB Dat.

L1 Cache

Core

Fig. 3: The microarchitecture of one core (r.h.s.) showing the cache hierarchy, Scalar Processing Unit (SPU)
and Vector Processing Unit (VPU). The l.h.s. visualizes the mask and vector register data types.

MIC-Implementation: We have parallelized our program with OpenMP over all HW
threads and vectorized it using low-level compiler functions called intrinsics. Those assembly-
coded functions are expanded inline and do not require explicit register management or
instruction scheduling through the programmer as in pure assembly code. There are 512 bit
intrinsics data types for single- and double-precision accuracy as well as for integer values.
More than 32 variables of a 512 bit data type can be used simultaneously. With only 32 zmm
registers available in hardware, the compiler is, in this case, forced to use spilling. Also using
intrinsics, the software, therefore, has to be designed in a register aware manner; only the
explicit management of the registers is taken over by the compiler. However, we found that
the compiler is only able to optimize code over small regions. Thus, the order of intrinsics
has an influence on the achieved performance, thereby making optimizations more di�cult.
We assume this issue is caused by the lack of out-of-order execution.
Site fusion: One problem of using 512 bit registers involving SU(3) matrix vector products
is that one matrix does not fit into an integer number of zmm registers without padding.
Because of that, it is more e�cient to process several matrix vector products at the same
time using a site fusion method. A naive single-precision implementation could be to create
a “Struct of Arrays” (SoA) object for 16 matrices as well as for 16 vectors. Such a SoA vector
object requires 6 zmm registers when it is loaded from memory. One specific register then
refers to the real or imaginary part of the same color component gathered from all 16 vectors,
thus each vector register can be treated in a “scalar way”. These SoA matrix/vector objects
are stored in an array with a site ordering technique. Our Dslash kernel runs best with
streaming through xy-planes and is specifically adapted for inverting multiple right-hand

sides. Therefore, we use a 8-fold site fusion method, combining 8 sites of the same parity in
x-direction, which makes the vector arithmetics less trivial and requires explicit in-register
align/blend operations. By doing so we reduce the register pressure by 50% compared to the
naive 16-fold site fusion method, which is a crucial optimization for a multiple right-hand
side inverter.
Prefetching: For indirect memory access, i.e. the array index is a non-trivial calculation
or loaded from memory, it is not possible for the compiler to insert software prefetches. The
MIC has a L2 hardware prefetcher which is able to recognize simple access pattern in such
a way that it schedules a prefetch instruction before the data is actually needed. We found
that it does a very good job for a linear memory access. Thus, there is no need for software
prefetching by hand inside the linear algebra operations of the CG. However, the access
pattern of the Dslash kernel is too complicated for the hardware prefetcher. Therefore, it is
required to insert L2 and L1 software prefetches using intrinsics, since a cache miss on an
in-order CPU is the worst-case scenario. The HISQ inverter runs 2⇥ faster with inserted
software prefetches.

IV. Comparison
We performed our benchmarks for a single accelerator. We used CUDA 6.0 for the GPU and
the Intel compiler 14.0 for MIC. We used the default settings of MPSS 3.2 and a balanced
processor a�nity. First we discuss the performance as a function of the number of rhs. The
maximum number of rhs is furthermore limited by the memory requirements.

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8

HISQ CG 643
×16

GFlop/s

#rhs

K20 ECC
K20

K40 ECC
K40

Phi ECC
Phi

Titan

Fig. 4: Performance of the CG inverter on di↵erent accelerators for a 643⇥16 lattice as a function of the
number of rhs. The dashed lines corresponds to ECC disabled devices.

We observe roughly the expected scaling from the increased arithmetic intensity. When com-
paring the results for four right hand sides to one right hand side we see improvements by a
factor of about 2, close to the observed increase in arithmetic intensity for the Dslash. For
the full CG the linear algebra operations were expected to weaken the e↵ect of the increased
arithmetic intensity for the Dslash.
At four right hand sides we obtain about 10% of the theoretical peak performance. For the
Xeon Phi it is a bit more (⇠ 12%), but its theoretical peak performance is also the lowest
of all accelerators used here while its theoretical memory bandwidth is the highest. For
the GPUs we observe a performance close to the naive estimate (arithmetic intensity) ⇥
(theoretical memory bandwidth). As previously report the theoretical memory bandwidth
is nearly impossible to reach on the Xeon Phi. However, our performance numbers are in
agreement with the estimate (arithmetic intensity) ⇥ (memory bandwidth from the stream
benchmark).

 100

 150

 200

 250

 300

 350

 400

 450

163
×4 323

×8 483
×12 323

×64 643
×16

HISQ CG 4 rhs

GFlop/s

K20 ECC
K20

K40 ECC
K40

Phi ECC
Phi

Titan

Fig. 5: Performance of the CG inverter for 4 rhs on di↵erent accelerators as a function of the lattice size. The
dashed lines corresponds to ECC disabled devices.

If we consider the performance of the CG for a a fixed number of rhs (here n = 4) we observe
that the best performance is only obtained for lattice sizes larger than 323⇥8. With our code
the Xeon Phi is slightly slower than a K20. The K40 is another 30 � 40% faster. That is
consistent with the increase in the theoretical memory bandwidth. For cases where disabled
ECC is acceptable the significantly cheaper gaming / amateur card Titan GTX achieves a
perfomance close to the K40.
Energy consumption: A further point that we quickly checked was the typical energy
consumption of the accelerator. For four right-hand sides and lattice sizes between 323⇥8
and 643⇥16 we observed values ⇠125 W for the K20 and ⇠185 W for the K40 without
ECC. The Xeon Phi consumed the most energy at about 200 W. These numbers have been
measured using the system / accelerator counters and do not include a host system. The
resulting e�ciency for the Kepler architecture is hence about 2.25 (GFlop/s)/W. For the
Xeon Phi we estimate ⇠ 1.5(GFlop/s)/W at four right hand sides.

Acknowledgement: We acknowledge support from NVIDIA
R�
through the CUDA Re-

search Center program. We thank Mike Clark for providing access to a Titan GTX card
for benchmarks. Furthermore, we would like to thank the Intel

R�
Developer team for their

constant support.

References
[1] A. Bazavov et al., arXiv:1404.4043 [hep-lat].

[2] A. Bazavov et al., arXiv:1404.6511 [hep-lat].

[3] A. Bazavov et al., Phys. Rev. Lett. 111, 082301 (2013).

[4] A. Bazavov et al., Phys. Rev. Lett. 109, 192302 (2012).

[5]Nvidia GK110 whitepaper, http://www.nvidia.com/content/PDF/

kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[6] Intel Xeon Phi Coprocessor System Software Developers Guide.

[7] J. D. McCalpin, http://www.cs.virginia.edu/stream/

GTC 2015 | Mathias Wagner | Indiana University |

HISQ Inverter for multiple right hand sides (rhs)

•combine multiple inversions with constant gauge field (constant sparse matrix) 
 

•reuse links (input for the sparse matrix) in the matrix-vector multiplication (Dslash) 
 

HISQ inverter on Intel R� Xeon PhiTM and NVIDIA R� GPUs
O. Kaczmarek(a), Swagato Mukherjee(b), C. Schmidt(a), P. Steinbrecher(a) and M. Wagner(c)

(a) Universität Bielefeld - Germany, (b) Brookhaven National Laboratory - USA, (c) Indiana University - USA

I. Introduction
Conserved charge fluctuations: For the analysis of QCD simulations one often needs
to perform many inversions of the Fermion Matrix for a constant gauge field. In finite tem-
perature QCD the calculation of the fluctuation of conserved charges, brayon number (B),
electric charge (Q) and strangeness (S) is such an example. Their calculation is particular
interesting as they can measured in experiments at RHIC and LHC and also be determined
from generalized susceptibilities in Lattice QCD:

�

BQS

mnk

(T) =
1

V T

3

@

m+n+k lnZ
@ (µ

B

/T)m @ (µ
Q

/T)n @ (µ
S

/T)k

�����
~µ=0

. (1)

The required derivatives w.r.t. the chemical potentials can be obtained by stochastically
estimating the traces with a su�ciently large number of random vectors ⌘, e.g.

Tr

✓
@

n1
M

@µ

n1
M

�1@
n2
M

@µ

n2
. . .M

�1

◆
= lim

N!1

1

N

NX

k=1

⌘

†
k

@

n1
M

@µ

n1
M

�1@
n2
M

@µ

n2
. . .M

�1
⌘

k

. (2)

For each random vector we need to perform several inversions of the Fermion Matrix, de-
pending on the highest degree of derivative we calculate. Typically we use 1500 random
vectors to estimate the traces on a single gauge configuration. To also reduce the gauge
noise we need between 5000 and 20000 gauge configurations for each temperature. The
generated data have been used for several investigations in the last years [1, 2, 3, 4].
For reasons of the numerical costs, staggered fermions are the most common type of fermions
for thermodynamic calculations on the lattice. We use the highly improved staggered fermion
(HISQ) action. It reduces the taste-splitting as much as possible. The HISQ action uses two
levels of fat7 (+ lepage) smearing and a Naik term. In terms of the smeared links X and
Naik links N the Dslash operator reads

w

x

= D

x,x

0
v

x

0 =
4X

µ=0

h⇣
X

x,µ

v

x+µ �X

†
x�µ,µ

v

x�µ

⌘
+
⇣
N

x,µ

v

x+3µ �N

†
x�3µ,µvx�3µ

⌘i
. (3)

Accelerators: In the Krylov solvers used for the inversion the application of the Dslash
operator is the dominating term. It typically consumes more than 80% of the runtime. It has
a low arithmetic intensity (Flop/byte ⇠0.73 for single precision). Hence the performance is
bound by the available memory bandwidth. These types of problems are well suitable for
accelerators as these currently o↵er memory bandwidths in the range of 200 � 400 GB/s
and with the use of stacked DRAM are expected to reach 1 TB/s in the next years. Still the
most important factor when tuning is to avoid memory access. A common optimization is
to exploit available symmetries and reconstruct the gauge links on the fly from 8 or 12 floats
instead of loading all 18 floats. For improved actions these symmetries are often broken. For
the HISQ action only the Naik-part can be reconstructed from 9 or 13/14 floats.
In the following we will discuss our implementation of the CG inverter for the HISQ action
on NVIDIA

R�
GPUs and the Intel

R�
Xeon Phi

TM

. The GPUs are based on the Kepler archi-
tecture as also used in the Titan supercomputer in Oak Ridge. The Xeon Phi is based on
the Knights Corner architecture as also used in Tianhe-2.

Phi
TM

5110P K20 K40 GTX Titan

Cores / SMX 60 13 15 14
(Threads/Core) / (Cores/SMX) 4 192 192 192
Clock Speed [MHz] 1053 706 745/810/875 837
L1 Cache / Core [KB] 32 16� 48 16� 48 16� 48
L2 Cache [MB] 30 1.5 1.5 1.5
Memory Size [GB] 8 5 12 6
peak fp32 [TFlop/s] 2.02 3.52 4.29 4.5
peak fp64 [TFlop/s] 1.01 1.17 1.43 1.5
Memory Bandwidth [GB/s] 320 208 288 288
TDP [W] 225 225 235 250

Tab. 1: Summary of the important technical data of the accelerators we have used in our benchmarks.

Conjugate gradient for multiple right hand sides: At 1500 random vectors for
the noisy estimators a large number of inversions are performed for a constant gauge field.
Grouping the random vectors in small bundles one can exploit the constant gauge field and
apply the Dslash for multiple right hand sides (rhs) at once:

⇣
w

(1)
x

, w

(2)
x

, . . . , w

(n)
x

⌘
= D

x,x

0

⇣
v

(1)
x

0 , v
(2)
x

0 , . . . , v
(n)
x

⌘
(4)

This increases the arithmetic intensity of the HISQ-Dslash as the loads for the gauge field
occur only once for the n rhs.

#rhs 1 2 3 4 5 6 8

Flop/byte (full) 0.73 1.16 1.45 1.65 1.80 1.91 2.08
Flop/byte (r14) 0.80 1.25 1.53 1.73 1.87 1.98 2.14

The numbers above are for single precision (fp32). The numbers for double precision (fp64)
di↵er by a factor of 2. Throughout the following we will only discuss single precision and also
neglect approaches like mixed precision. Increasing the number of rhs from 1 to 4 already
results in an improvement by a factor of more than 2. For even higher n the relative e↵ect
is less significant. In the limit n ! 1 the highest possible arithmetic intensity that can be
reached is ⇠ 2.75. At n = 8 we have reached already ⇠ 75% of the limiting peak intensity
while for 1 rhs we only obtain 25�30%. It is also obvious that for an increasing number
of gauge fields the memory tra�c caused by the loading of the gauge fields is no longer
dominating and the impact of reconstructing the Naik links reduces from ⇠10% for a single
rhs to ⇠ 3% for 8 rhs. The additional register pressure due to the reconstruction of the
gauge links might then also result in a lower performance. For the full conjugate gradient
the additional linear algebra does not allow for the reuse of any constant fields. The e↵ect
of the increased arithmetic intensity of the Dslash while therefore be less pronounced in the
full CG.

II. GPU
Architecture: NVIDIA’s current architecture for compute GPUs is called Kepler, the
corresponding chip GK110. The latest compute card, the Tesla K40, comes with a slightly
modified version GK110B and GPU Boost. The latter allows the user to run the GPU at
a higher core clock. As memory-bandwidth bound problems usually stay well within the
thermal and power envelopes the card is capable of constantly running at this higher clock
for Lattice QCD simulations. The memory clock remains constant and thus a performance
impact on bandwidth-bound applications is not obvious. However, the higher core clock al-
lows to better saturate the available bandwidth. We will only show results with the highest
possible core clock for the K40.

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64Ͳbit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

x The�new�SMX�processor�architecture�
x An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

x Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110’s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we’ve�built,�but�also�the�most�programmable�and�powerͲefficient.��

�

SMX:�192�singleͲprecision�CUDA�cores,�64�doubleͲprecision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

Fig. 1: The GK110 chip and one of its SMX processors [5].

The GK110 chip consists of several streaming multiprocessors (“SMX”). The number of
SMX depends on the card. Each SMX features 192 CUDA cores. Within a SMX they share
a configurable L1 cache / shared memory area and a 48KB read-only/texture cache. The
shared L2 cache for all SMX is relatively small with only 1.5MB.
GPU-Implementation: For a bandwidth-bound problem the memory layout and access
is crucial to achieve optimal performance. As GPUs have been used for several years to
accelerate LQCD simulations a lot of the techniques we used may be considered as standard
by now. We use a Structure of Arrays (SoA) memory layout for both the color vectors and
the gauge links. We reconstruct the Naik links from 14 floats. We observed best results by
loading the gauge links through the texture unit and the color vectors through the standard
load path (L1).
For the implementation of the Dslash for multiple rhs two approaches are possible. On the
GPU the obvious parallelization for the Dslash for one rhs is over the elements of the out-
put vector, i.e., each thread processes one element of the output vector. The first approach
(register-blocking) lets each thread multiply the already loaded gauge link to the corre-
sponding element of multiple right-hand sides. The thread thus generates the element for
one lattice site for several output vectors. This approach increases the number of registers
needed per thread and will result in a lower GPU occupancy or at some point spilling. Both
e↵ects will limit the achievable performance, while the latter is less likely as each thread can
use up to 255 registers for the Kepler architecture.
The second approach (texture cache blocking) is to let each thread process one element of
one output vector and group the threads into two-dimensional CUDA blocks with lattice
site x and rhs i. As one CUDA block is executed on one SMX this ensures temporal locality
for the gauge links in the texture cache. Ideally the gauge links only need to be loaded from
the global memory for one rhs. When the threads for the other rhs are executed they are
likely to obtain the gauge links from cache. This approach does not increase the register
pressure. Furthermore the total number of threads is increased by a factor n and this may
furthermore improve the overall GPU usage.
Both approaches can also be combined and the best possible solution is a question of tun-
ing. For our benchmarks we determine the optimal configuration for a given lattice size and
number of rhs for each GPU. Furthermore we employ an automatic tuning to select the
optimal launch configuration for the Dslash operation also depending on the GPU, lattice
size and number of rhs.
The remaining linear algebra-Kernels are kept separate for the di↵erent rhs. This allows us
to easily stop the solver for individual rhs that have already met the convergence criterion.
To hide latencies and allow for a better usage of the GPU we use separate CUDA streams
for each right hand side. We keep the whole solver on the GPU and only communicate the
set of residuals for all rhs at the end of each iteration.

III. MIC
Architecture: The Intel

R�
Xeon Phi

TM

is an in-order x86 based many-core processor [6].
The accelerator runs a Linux µOS and can have up to 61 cores combined via a bidirectional
ring (see figure 2). Therefore, the memory transfers are limited by concurrency reaching only
140 GB/s for a stream triad benchmark [7]. Each core has a private 32 KB L1 data and
instruction cache, as well as a global visible 512 KB L2 cache. In the case of an local L2
cache miss a core can cross-snoop another’s core L2 cache. If the needed data is present it
is send through the ring interconnect, thus avoiding a direct memory access.

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

PCIe

Fig. 2: Visualization of the bidirectional ring on the die. Each core has its own tag directory (TD) keeping
the cache hierarchy fully coherent. The dotted line illustrates the missing cores.

One core has thirty-two 512 bit zmm vector registers corresponding to any multiple of a
32/64 bit floating-point number or integer (see figure 3). The Many Integrated Core (MIC)
has its own SIMD instruction set extension IMIC with support for Fused Multiply Add
(FMA) and mask operations. Each core has 4 hardware context threads scheduled with a
round-robin algorithm delivering two executed instructions per cycle while running with at
least two threads per core. In order to fully utilize the MIC it is mostly required to run with
four threads per core. Especially for memory bound applications using four threads o↵ers
more flexibility to the processor to swap the context of a thread, which is currently stalled
by a cache miss. The MIC has support for streaming data directly into memory without
reading the original content of an entire cache line, thus bypassing the cache and increasing
the performance of algorithms where the memory footprint is too large for the cache [6].

Mask Registers:

Eight 16-bit k registers per core.

16 bits

150

Vector Registers:

Thirty-two 512-bit zmm registers per core.

16 floats

5112550

8 doubles

Instruction Decode

SPU VPU

Vector

Registers

Scalar

Registers

32KB Ins.

L1 Cache

512KB L2 Cache

32KB Dat.

L1 Cache

Core

Fig. 3: The microarchitecture of one core (r.h.s.) showing the cache hierarchy, Scalar Processing Unit (SPU)
and Vector Processing Unit (VPU). The l.h.s. visualizes the mask and vector register data types.

MIC-Implementation: We have parallelized our program with OpenMP over all HW
threads and vectorized it using low-level compiler functions called intrinsics. Those assembly-
coded functions are expanded inline and do not require explicit register management or
instruction scheduling through the programmer as in pure assembly code. There are 512 bit
intrinsics data types for single- and double-precision accuracy as well as for integer values.
More than 32 variables of a 512 bit data type can be used simultaneously. With only 32 zmm
registers available in hardware, the compiler is, in this case, forced to use spilling. Also using
intrinsics, the software, therefore, has to be designed in a register aware manner; only the
explicit management of the registers is taken over by the compiler. However, we found that
the compiler is only able to optimize code over small regions. Thus, the order of intrinsics
has an influence on the achieved performance, thereby making optimizations more di�cult.
We assume this issue is caused by the lack of out-of-order execution.
Site fusion: One problem of using 512 bit registers involving SU(3) matrix vector products
is that one matrix does not fit into an integer number of zmm registers without padding.
Because of that, it is more e�cient to process several matrix vector products at the same
time using a site fusion method. A naive single-precision implementation could be to create
a “Struct of Arrays” (SoA) object for 16 matrices as well as for 16 vectors. Such a SoA vector
object requires 6 zmm registers when it is loaded from memory. One specific register then
refers to the real or imaginary part of the same color component gathered from all 16 vectors,
thus each vector register can be treated in a “scalar way”. These SoA matrix/vector objects
are stored in an array with a site ordering technique. Our Dslash kernel runs best with
streaming through xy-planes and is specifically adapted for inverting multiple right-hand

sides. Therefore, we use a 8-fold site fusion method, combining 8 sites of the same parity in
x-direction, which makes the vector arithmetics less trivial and requires explicit in-register
align/blend operations. By doing so we reduce the register pressure by 50% compared to the
naive 16-fold site fusion method, which is a crucial optimization for a multiple right-hand
side inverter.
Prefetching: For indirect memory access, i.e. the array index is a non-trivial calculation
or loaded from memory, it is not possible for the compiler to insert software prefetches. The
MIC has a L2 hardware prefetcher which is able to recognize simple access pattern in such
a way that it schedules a prefetch instruction before the data is actually needed. We found
that it does a very good job for a linear memory access. Thus, there is no need for software
prefetching by hand inside the linear algebra operations of the CG. However, the access
pattern of the Dslash kernel is too complicated for the hardware prefetcher. Therefore, it is
required to insert L2 and L1 software prefetches using intrinsics, since a cache miss on an
in-order CPU is the worst-case scenario. The HISQ inverter runs 2⇥ faster with inserted
software prefetches.

IV. Comparison
We performed our benchmarks for a single accelerator. We used CUDA 6.0 for the GPU and
the Intel compiler 14.0 for MIC. We used the default settings of MPSS 3.2 and a balanced
processor a�nity. First we discuss the performance as a function of the number of rhs. The
maximum number of rhs is furthermore limited by the memory requirements.

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8

HISQ CG 643
×16

GFlop/s

#rhs

K20 ECC
K20

K40 ECC
K40

Phi ECC
Phi

Titan

Fig. 4: Performance of the CG inverter on di↵erent accelerators for a 643⇥16 lattice as a function of the
number of rhs. The dashed lines corresponds to ECC disabled devices.

We observe roughly the expected scaling from the increased arithmetic intensity. When com-
paring the results for four right hand sides to one right hand side we see improvements by a
factor of about 2, close to the observed increase in arithmetic intensity for the Dslash. For
the full CG the linear algebra operations were expected to weaken the e↵ect of the increased
arithmetic intensity for the Dslash.
At four right hand sides we obtain about 10% of the theoretical peak performance. For the
Xeon Phi it is a bit more (⇠ 12%), but its theoretical peak performance is also the lowest
of all accelerators used here while its theoretical memory bandwidth is the highest. For
the GPUs we observe a performance close to the naive estimate (arithmetic intensity) ⇥
(theoretical memory bandwidth). As previously report the theoretical memory bandwidth
is nearly impossible to reach on the Xeon Phi. However, our performance numbers are in
agreement with the estimate (arithmetic intensity) ⇥ (memory bandwidth from the stream
benchmark).

 100

 150

 200

 250

 300

 350

 400

 450

163
×4 323

×8 483
×12 323

×64 643
×16

HISQ CG 4 rhs

GFlop/s

K20 ECC
K20

K40 ECC
K40

Phi ECC
Phi

Titan

Fig. 5: Performance of the CG inverter for 4 rhs on di↵erent accelerators as a function of the lattice size. The
dashed lines corresponds to ECC disabled devices.

If we consider the performance of the CG for a a fixed number of rhs (here n = 4) we observe
that the best performance is only obtained for lattice sizes larger than 323⇥8. With our code
the Xeon Phi is slightly slower than a K20. The K40 is another 30 � 40% faster. That is
consistent with the increase in the theoretical memory bandwidth. For cases where disabled
ECC is acceptable the significantly cheaper gaming / amateur card Titan GTX achieves a
perfomance close to the K40.
Energy consumption: A further point that we quickly checked was the typical energy
consumption of the accelerator. For four right-hand sides and lattice sizes between 323⇥8
and 643⇥16 we observed values ⇠125 W for the K20 and ⇠185 W for the K40 without
ECC. The Xeon Phi consumed the most energy at about 200 W. These numbers have been
measured using the system / accelerator counters and do not include a host system. The
resulting e�ciency for the Kepler architecture is hence about 2.25 (GFlop/s)/W. For the
Xeon Phi we estimate ⇠ 1.5(GFlop/s)/W at four right hand sides.

Acknowledgement: We acknowledge support from NVIDIA
R�
through the CUDA Re-

search Center program. We thank Mike Clark for providing access to a Titan GTX card
for benchmarks. Furthermore, we would like to thank the Intel

R�
Developer team for their

constant support.

References
[1] A. Bazavov et al., arXiv:1404.4043 [hep-lat].

[2] A. Bazavov et al., arXiv:1404.6511 [hep-lat].

[3] A. Bazavov et al., Phys. Rev. Lett. 111, 082301 (2013).

[4] A. Bazavov et al., Phys. Rev. Lett. 109, 192302 (2012).

[5]Nvidia GK110 whitepaper, http://www.nvidia.com/content/PDF/

kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[6] Intel Xeon Phi Coprocessor System Software Developers Guide.

[7] J. D. McCalpin, http://www.cs.virginia.edu/stream/

#rhs 1 2 3 4 5
Flop/byte 0.80 1.25 1.53 1.73 1.87 ar

ith
m

et
ic

 in
te

ns
ity

0

0.5

1

1.5

2

rhs
1 2 3 4 5

GTC 2015 | Mathias Wagner | Indiana University |

HISQ Inverter for multiple right hand sides (rhs)

•combine multiple inversions with constant gauge field (constant sparse matrix) 
 

•reuse links (input for the sparse matrix) in the matrix-vector multiplication (Dslash) 
 

• ignored cache effects for vectors here

• caching will be much harder now as cache needs to be shared by vectors for #rhs

• memory traffic from gauge links decreases from 70% (1 rhs) to 30% (4 rhs)

HISQ inverter on Intel R� Xeon PhiTM and NVIDIA R� GPUs
O. Kaczmarek(a), Swagato Mukherjee(b), C. Schmidt(a), P. Steinbrecher(a) and M. Wagner(c)

(a) Universität Bielefeld - Germany, (b) Brookhaven National Laboratory - USA, (c) Indiana University - USA

I. Introduction
Conserved charge fluctuations: For the analysis of QCD simulations one often needs
to perform many inversions of the Fermion Matrix for a constant gauge field. In finite tem-
perature QCD the calculation of the fluctuation of conserved charges, brayon number (B),
electric charge (Q) and strangeness (S) is such an example. Their calculation is particular
interesting as they can measured in experiments at RHIC and LHC and also be determined
from generalized susceptibilities in Lattice QCD:

�

BQS

mnk

(T) =
1

V T

3

@

m+n+k lnZ
@ (µ

B

/T)m @ (µ
Q

/T)n @ (µ
S

/T)k

�����
~µ=0

. (1)

The required derivatives w.r.t. the chemical potentials can be obtained by stochastically
estimating the traces with a su�ciently large number of random vectors ⌘, e.g.

Tr

✓
@

n1
M

@µ

n1
M

�1@
n2
M

@µ

n2
. . .M

�1

◆
= lim

N!1

1

N

NX

k=1

⌘

†
k

@

n1
M

@µ

n1
M

�1@
n2
M

@µ

n2
. . .M

�1
⌘

k

. (2)

For each random vector we need to perform several inversions of the Fermion Matrix, de-
pending on the highest degree of derivative we calculate. Typically we use 1500 random
vectors to estimate the traces on a single gauge configuration. To also reduce the gauge
noise we need between 5000 and 20000 gauge configurations for each temperature. The
generated data have been used for several investigations in the last years [1, 2, 3, 4].
For reasons of the numerical costs, staggered fermions are the most common type of fermions
for thermodynamic calculations on the lattice. We use the highly improved staggered fermion
(HISQ) action. It reduces the taste-splitting as much as possible. The HISQ action uses two
levels of fat7 (+ lepage) smearing and a Naik term. In terms of the smeared links X and
Naik links N the Dslash operator reads

w

x

= D

x,x

0
v

x

0 =
4X

µ=0

h⇣
X

x,µ

v

x+µ �X

†
x�µ,µ

v

x�µ

⌘
+
⇣
N

x,µ

v

x+3µ �N

†
x�3µ,µvx�3µ

⌘i
. (3)

Accelerators: In the Krylov solvers used for the inversion the application of the Dslash
operator is the dominating term. It typically consumes more than 80% of the runtime. It has
a low arithmetic intensity (Flop/byte ⇠0.73 for single precision). Hence the performance is
bound by the available memory bandwidth. These types of problems are well suitable for
accelerators as these currently o↵er memory bandwidths in the range of 200 � 400 GB/s
and with the use of stacked DRAM are expected to reach 1 TB/s in the next years. Still the
most important factor when tuning is to avoid memory access. A common optimization is
to exploit available symmetries and reconstruct the gauge links on the fly from 8 or 12 floats
instead of loading all 18 floats. For improved actions these symmetries are often broken. For
the HISQ action only the Naik-part can be reconstructed from 9 or 13/14 floats.
In the following we will discuss our implementation of the CG inverter for the HISQ action
on NVIDIA

R�
GPUs and the Intel

R�
Xeon Phi

TM

. The GPUs are based on the Kepler archi-
tecture as also used in the Titan supercomputer in Oak Ridge. The Xeon Phi is based on
the Knights Corner architecture as also used in Tianhe-2.

Phi
TM

5110P K20 K40 GTX Titan

Cores / SMX 60 13 15 14
(Threads/Core) / (Cores/SMX) 4 192 192 192
Clock Speed [MHz] 1053 706 745/810/875 837
L1 Cache / Core [KB] 32 16� 48 16� 48 16� 48
L2 Cache [MB] 30 1.5 1.5 1.5
Memory Size [GB] 8 5 12 6
peak fp32 [TFlop/s] 2.02 3.52 4.29 4.5
peak fp64 [TFlop/s] 1.01 1.17 1.43 1.5
Memory Bandwidth [GB/s] 320 208 288 288
TDP [W] 225 225 235 250

Tab. 1: Summary of the important technical data of the accelerators we have used in our benchmarks.

Conjugate gradient for multiple right hand sides: At 1500 random vectors for
the noisy estimators a large number of inversions are performed for a constant gauge field.
Grouping the random vectors in small bundles one can exploit the constant gauge field and
apply the Dslash for multiple right hand sides (rhs) at once:

⇣
w

(1)
x

, w

(2)
x

, . . . , w

(n)
x

⌘
= D

x,x

0

⇣
v

(1)
x

0 , v
(2)
x

0 , . . . , v
(n)
x

⌘
(4)

This increases the arithmetic intensity of the HISQ-Dslash as the loads for the gauge field
occur only once for the n rhs.

#rhs 1 2 3 4 5 6 8

Flop/byte (full) 0.73 1.16 1.45 1.65 1.80 1.91 2.08
Flop/byte (r14) 0.80 1.25 1.53 1.73 1.87 1.98 2.14

The numbers above are for single precision (fp32). The numbers for double precision (fp64)
di↵er by a factor of 2. Throughout the following we will only discuss single precision and also
neglect approaches like mixed precision. Increasing the number of rhs from 1 to 4 already
results in an improvement by a factor of more than 2. For even higher n the relative e↵ect
is less significant. In the limit n ! 1 the highest possible arithmetic intensity that can be
reached is ⇠ 2.75. At n = 8 we have reached already ⇠ 75% of the limiting peak intensity
while for 1 rhs we only obtain 25�30%. It is also obvious that for an increasing number
of gauge fields the memory tra�c caused by the loading of the gauge fields is no longer
dominating and the impact of reconstructing the Naik links reduces from ⇠10% for a single
rhs to ⇠ 3% for 8 rhs. The additional register pressure due to the reconstruction of the
gauge links might then also result in a lower performance. For the full conjugate gradient
the additional linear algebra does not allow for the reuse of any constant fields. The e↵ect
of the increased arithmetic intensity of the Dslash while therefore be less pronounced in the
full CG.

II. GPU
Architecture: NVIDIA’s current architecture for compute GPUs is called Kepler, the
corresponding chip GK110. The latest compute card, the Tesla K40, comes with a slightly
modified version GK110B and GPU Boost. The latter allows the user to run the GPU at
a higher core clock. As memory-bandwidth bound problems usually stay well within the
thermal and power envelopes the card is capable of constantly running at this higher clock
for Lattice QCD simulations. The memory clock remains constant and thus a performance
impact on bandwidth-bound applications is not obvious. However, the higher core clock al-
lows to better saturate the available bandwidth. We will only show results with the highest
possible core clock for the K40.

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64Ͳbit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

x The�new�SMX�processor�architecture�
x An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

x Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110’s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we’ve�built,�but�also�the�most�programmable�and�powerͲefficient.��

�

SMX:�192�singleͲprecision�CUDA�cores,�64�doubleͲprecision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

Fig. 1: The GK110 chip and one of its SMX processors [5].

The GK110 chip consists of several streaming multiprocessors (“SMX”). The number of
SMX depends on the card. Each SMX features 192 CUDA cores. Within a SMX they share
a configurable L1 cache / shared memory area and a 48KB read-only/texture cache. The
shared L2 cache for all SMX is relatively small with only 1.5MB.
GPU-Implementation: For a bandwidth-bound problem the memory layout and access
is crucial to achieve optimal performance. As GPUs have been used for several years to
accelerate LQCD simulations a lot of the techniques we used may be considered as standard
by now. We use a Structure of Arrays (SoA) memory layout for both the color vectors and
the gauge links. We reconstruct the Naik links from 14 floats. We observed best results by
loading the gauge links through the texture unit and the color vectors through the standard
load path (L1).
For the implementation of the Dslash for multiple rhs two approaches are possible. On the
GPU the obvious parallelization for the Dslash for one rhs is over the elements of the out-
put vector, i.e., each thread processes one element of the output vector. The first approach
(register-blocking) lets each thread multiply the already loaded gauge link to the corre-
sponding element of multiple right-hand sides. The thread thus generates the element for
one lattice site for several output vectors. This approach increases the number of registers
needed per thread and will result in a lower GPU occupancy or at some point spilling. Both
e↵ects will limit the achievable performance, while the latter is less likely as each thread can
use up to 255 registers for the Kepler architecture.
The second approach (texture cache blocking) is to let each thread process one element of
one output vector and group the threads into two-dimensional CUDA blocks with lattice
site x and rhs i. As one CUDA block is executed on one SMX this ensures temporal locality
for the gauge links in the texture cache. Ideally the gauge links only need to be loaded from
the global memory for one rhs. When the threads for the other rhs are executed they are
likely to obtain the gauge links from cache. This approach does not increase the register
pressure. Furthermore the total number of threads is increased by a factor n and this may
furthermore improve the overall GPU usage.
Both approaches can also be combined and the best possible solution is a question of tun-
ing. For our benchmarks we determine the optimal configuration for a given lattice size and
number of rhs for each GPU. Furthermore we employ an automatic tuning to select the
optimal launch configuration for the Dslash operation also depending on the GPU, lattice
size and number of rhs.
The remaining linear algebra-Kernels are kept separate for the di↵erent rhs. This allows us
to easily stop the solver for individual rhs that have already met the convergence criterion.
To hide latencies and allow for a better usage of the GPU we use separate CUDA streams
for each right hand side. We keep the whole solver on the GPU and only communicate the
set of residuals for all rhs at the end of each iteration.

III. MIC
Architecture: The Intel

R�
Xeon Phi

TM

is an in-order x86 based many-core processor [6].
The accelerator runs a Linux µOS and can have up to 61 cores combined via a bidirectional
ring (see figure 2). Therefore, the memory transfers are limited by concurrency reaching only
140 GB/s for a stream triad benchmark [7]. Each core has a private 32 KB L1 data and
instruction cache, as well as a global visible 512 KB L2 cache. In the case of an local L2
cache miss a core can cross-snoop another’s core L2 cache. If the needed data is present it
is send through the ring interconnect, thus avoiding a direct memory access.

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

GDDR MC

PCIe

Fig. 2: Visualization of the bidirectional ring on the die. Each core has its own tag directory (TD) keeping
the cache hierarchy fully coherent. The dotted line illustrates the missing cores.

One core has thirty-two 512 bit zmm vector registers corresponding to any multiple of a
32/64 bit floating-point number or integer (see figure 3). The Many Integrated Core (MIC)
has its own SIMD instruction set extension IMIC with support for Fused Multiply Add
(FMA) and mask operations. Each core has 4 hardware context threads scheduled with a
round-robin algorithm delivering two executed instructions per cycle while running with at
least two threads per core. In order to fully utilize the MIC it is mostly required to run with
four threads per core. Especially for memory bound applications using four threads o↵ers
more flexibility to the processor to swap the context of a thread, which is currently stalled
by a cache miss. The MIC has support for streaming data directly into memory without
reading the original content of an entire cache line, thus bypassing the cache and increasing
the performance of algorithms where the memory footprint is too large for the cache [6].

Mask Registers:

Eight 16-bit k registers per core.

16 bits

150

Vector Registers:

Thirty-two 512-bit zmm registers per core.

16 floats

5112550

8 doubles

Instruction Decode

SPU VPU

Vector

Registers

Scalar

Registers

32KB Ins.

L1 Cache

512KB L2 Cache

32KB Dat.

L1 Cache

Core

Fig. 3: The microarchitecture of one core (r.h.s.) showing the cache hierarchy, Scalar Processing Unit (SPU)
and Vector Processing Unit (VPU). The l.h.s. visualizes the mask and vector register data types.

MIC-Implementation: We have parallelized our program with OpenMP over all HW
threads and vectorized it using low-level compiler functions called intrinsics. Those assembly-
coded functions are expanded inline and do not require explicit register management or
instruction scheduling through the programmer as in pure assembly code. There are 512 bit
intrinsics data types for single- and double-precision accuracy as well as for integer values.
More than 32 variables of a 512 bit data type can be used simultaneously. With only 32 zmm
registers available in hardware, the compiler is, in this case, forced to use spilling. Also using
intrinsics, the software, therefore, has to be designed in a register aware manner; only the
explicit management of the registers is taken over by the compiler. However, we found that
the compiler is only able to optimize code over small regions. Thus, the order of intrinsics
has an influence on the achieved performance, thereby making optimizations more di�cult.
We assume this issue is caused by the lack of out-of-order execution.
Site fusion: One problem of using 512 bit registers involving SU(3) matrix vector products
is that one matrix does not fit into an integer number of zmm registers without padding.
Because of that, it is more e�cient to process several matrix vector products at the same
time using a site fusion method. A naive single-precision implementation could be to create
a “Struct of Arrays” (SoA) object for 16 matrices as well as for 16 vectors. Such a SoA vector
object requires 6 zmm registers when it is loaded from memory. One specific register then
refers to the real or imaginary part of the same color component gathered from all 16 vectors,
thus each vector register can be treated in a “scalar way”. These SoA matrix/vector objects
are stored in an array with a site ordering technique. Our Dslash kernel runs best with
streaming through xy-planes and is specifically adapted for inverting multiple right-hand

sides. Therefore, we use a 8-fold site fusion method, combining 8 sites of the same parity in
x-direction, which makes the vector arithmetics less trivial and requires explicit in-register
align/blend operations. By doing so we reduce the register pressure by 50% compared to the
naive 16-fold site fusion method, which is a crucial optimization for a multiple right-hand
side inverter.
Prefetching: For indirect memory access, i.e. the array index is a non-trivial calculation
or loaded from memory, it is not possible for the compiler to insert software prefetches. The
MIC has a L2 hardware prefetcher which is able to recognize simple access pattern in such
a way that it schedules a prefetch instruction before the data is actually needed. We found
that it does a very good job for a linear memory access. Thus, there is no need for software
prefetching by hand inside the linear algebra operations of the CG. However, the access
pattern of the Dslash kernel is too complicated for the hardware prefetcher. Therefore, it is
required to insert L2 and L1 software prefetches using intrinsics, since a cache miss on an
in-order CPU is the worst-case scenario. The HISQ inverter runs 2⇥ faster with inserted
software prefetches.

IV. Comparison
We performed our benchmarks for a single accelerator. We used CUDA 6.0 for the GPU and
the Intel compiler 14.0 for MIC. We used the default settings of MPSS 3.2 and a balanced
processor a�nity. First we discuss the performance as a function of the number of rhs. The
maximum number of rhs is furthermore limited by the memory requirements.

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8

HISQ CG 643
×16

GFlop/s

#rhs

K20 ECC
K20

K40 ECC
K40

Phi ECC
Phi

Titan

Fig. 4: Performance of the CG inverter on di↵erent accelerators for a 643⇥16 lattice as a function of the
number of rhs. The dashed lines corresponds to ECC disabled devices.

We observe roughly the expected scaling from the increased arithmetic intensity. When com-
paring the results for four right hand sides to one right hand side we see improvements by a
factor of about 2, close to the observed increase in arithmetic intensity for the Dslash. For
the full CG the linear algebra operations were expected to weaken the e↵ect of the increased
arithmetic intensity for the Dslash.
At four right hand sides we obtain about 10% of the theoretical peak performance. For the
Xeon Phi it is a bit more (⇠ 12%), but its theoretical peak performance is also the lowest
of all accelerators used here while its theoretical memory bandwidth is the highest. For
the GPUs we observe a performance close to the naive estimate (arithmetic intensity) ⇥
(theoretical memory bandwidth). As previously report the theoretical memory bandwidth
is nearly impossible to reach on the Xeon Phi. However, our performance numbers are in
agreement with the estimate (arithmetic intensity) ⇥ (memory bandwidth from the stream
benchmark).

 100

 150

 200

 250

 300

 350

 400

 450

163
×4 323

×8 483
×12 323

×64 643
×16

HISQ CG 4 rhs

GFlop/s

K20 ECC
K20

K40 ECC
K40

Phi ECC
Phi

Titan

Fig. 5: Performance of the CG inverter for 4 rhs on di↵erent accelerators as a function of the lattice size. The
dashed lines corresponds to ECC disabled devices.

If we consider the performance of the CG for a a fixed number of rhs (here n = 4) we observe
that the best performance is only obtained for lattice sizes larger than 323⇥8. With our code
the Xeon Phi is slightly slower than a K20. The K40 is another 30 � 40% faster. That is
consistent with the increase in the theoretical memory bandwidth. For cases where disabled
ECC is acceptable the significantly cheaper gaming / amateur card Titan GTX achieves a
perfomance close to the K40.
Energy consumption: A further point that we quickly checked was the typical energy
consumption of the accelerator. For four right-hand sides and lattice sizes between 323⇥8
and 643⇥16 we observed values ⇠125 W for the K20 and ⇠185 W for the K40 without
ECC. The Xeon Phi consumed the most energy at about 200 W. These numbers have been
measured using the system / accelerator counters and do not include a host system. The
resulting e�ciency for the Kepler architecture is hence about 2.25 (GFlop/s)/W. For the
Xeon Phi we estimate ⇠ 1.5(GFlop/s)/W at four right hand sides.

Acknowledgement: We acknowledge support from NVIDIA
R�
through the CUDA Re-

search Center program. We thank Mike Clark for providing access to a Titan GTX card
for benchmarks. Furthermore, we would like to thank the Intel

R�
Developer team for their

constant support.

References
[1] A. Bazavov et al., arXiv:1404.4043 [hep-lat].

[2] A. Bazavov et al., arXiv:1404.6511 [hep-lat].

[3] A. Bazavov et al., Phys. Rev. Lett. 111, 082301 (2013).

[4] A. Bazavov et al., Phys. Rev. Lett. 109, 192302 (2012).

[5]Nvidia GK110 whitepaper, http://www.nvidia.com/content/PDF/

kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[6] Intel Xeon Phi Coprocessor System Software Developers Guide.

[7] J. D. McCalpin, http://www.cs.virginia.edu/stream/

#rhs 1 2 3 4 5
Flop/byte 0.80 1.25 1.53 1.73 1.87

GTC 2015 | Mathias Wagner | Indiana University |

GPU Implementation: Texture Cache and Registers

•obvious solution: store matrix in registers

•possible issue: more registers / thread  
→ occupancy / spilling

GTC 2015 | Mathias Wagner | Indiana University |

GPU Implementation: Texture Cache and Registers

•obvious solution: store matrix in registers

•possible issue: more registers / thread  
→ occupancy / spilling

__global__'Dslashreg'(w1,'w2,'w3,'v1,'v2,'v3'){
...
for(xp=...){
' w1(x)'='D(x,xp)'*'v1(xp);
' w2(x)'='D(x,xp)'*'v2(xp);
' w3(x)'='D(x,xp)'*'v3(xp);'
' }
}

__global__'Dslashcache'(w,'v)
...
offset'='threadIdx.y;
for(xp=...)
' w(x,'offset)'+='D(x,xp)'*'v(x,'offset)
}

__global__'Dslashregcache'(w1,'w2,'w3,'v1,'v2,'v3'){
...
offset'='threadIdx.y;
for(xp=...){
' w1(x,'offset)'='D(x,xp)'*'v1(xp,'offset);
' w2(x,'offset)'='D(x,xp)'*'v2(xp,'offset);
' w3(x,'offset)'='D(x,xp)'*'v3(xp,'offset);'
' }
}

GTC 2015 | Mathias Wagner | Indiana University |

GPU Implementation: Texture Cache and Registers

•obvious solution: store matrix in registers

•possible issue: more registers / thread  
→ occupancy / spilling

•exploit texture cache  
→ reduce register pressure

•links should hit in texture cache  
→ only one global load

•one block is executed by one SMX

__global__'Dslashreg'(w1,'w2,'w3,'v1,'v2,'v3'){
...
for(xp=...){
' w1(x)'='D(x,xp)'*'v1(xp);
' w2(x)'='D(x,xp)'*'v2(xp);
' w3(x)'='D(x,xp)'*'v3(xp);'
' }
}

__global__'Dslashcache'(w,'v)
...
offset'='threadIdx.y;
for(xp=...)
' w(x,'offset)'+='D(x,xp)'*'v(x,'offset)
}

__global__'Dslashregcache'(w1,'w2,'w3,'v1,'v2,'v3'){
...
offset'='threadIdx.y;
for(xp=...){
' w1(x,'offset)'='D(x,xp)'*'v1(xp,'offset);
' w2(x,'offset)'='D(x,xp)'*'v2(xp,'offset);
' w3(x,'offset)'='D(x,xp)'*'v3(xp,'offset);'
' }
}

x=0  
v1

x=1
v1

x=BS-1
v1

x=0  
v2

x=1
v2

x=BS-1
v2

x=0  
v3

x=1
v3

x=BS-1
v3

�

�

�

GTC 2015 | Mathias Wagner | Indiana University |

GPU Implementation: Texture Cache and Registers

•obvious solution: store matrix in registers

•possible issue: more registers / thread  
→ occupancy / spilling

•exploit texture cache  
→ reduce register pressure

•links should hit in texture cache  
→ only one global load

•one block is executed by one SMX

•combine both and explore best possible combinations

__global__'Dslashreg'(w1,'w2,'w3,'v1,'v2,'v3'){
...
for(xp=...){
' w1(x)'='D(x,xp)'*'v1(xp);
' w2(x)'='D(x,xp)'*'v2(xp);
' w3(x)'='D(x,xp)'*'v3(xp);'
' }
}

__global__'Dslashcache'(w,'v)
...
offset'='threadIdx.y;
for(xp=...)
' w(x,'offset)'+='D(x,xp)'*'v(x,'offset)
}

__global__'Dslashregcache'(w1,'w2,'w3,'v1,'v2,'v3'){
...
offset'='threadIdx.y;
for(xp=...){
' w1(x,'offset)'='D(x,xp)'*'v1(xp,'offset);
' w2(x,'offset)'='D(x,xp)'*'v2(xp,'offset);
' w3(x,'offset)'='D(x,xp)'*'v3(xp,'offset);'
' }
}

x=0  
v1

x=1
v1

x=BS-1
v1

x=0  
v2

x=1
v2

x=BS-1
v2

x=0  
v3

x=1
v3

x=BS-1
v3

�

�

�

GTC 2015 | Mathias Wagner | Indiana University |

Does it work ?

•use only memory bandwidth and arithmetic intensity

•estimate with bandwidth from triad benchmark

G
Fl

op
/s

0

125

250

375

500

rhs
1 2 3 4

K20 estimate K40 estimate K20 measured K40 measured

GTC 2015 | Mathias Wagner | Indiana University |

Does it work ?

•use only memory bandwidth and arithmetic intensity

•estimate with bandwidth from triad benchmark

•works even better than expected

• expectation speedup for 4 rhs / 1 rhs:1.73/0.8 ~ 2.16

• observed speedup: ~ 2.5

• makes more efficient use of GPU (why ?)

G
Fl

op
/s

0

125

250

375

500

rhs
1 2 3 4

K20 estimate K40 estimate K20 measured K40 measured

GTC 2015 | Mathias Wagner | Indiana University |

Does it work ?

•use only memory bandwidth and arithmetic intensity

•estimate with bandwidth from triad benchmark

•works even better than expected

• expectation speedup for 4 rhs / 1 rhs:1.73/0.8 ~ 2.16

• observed speedup: ~ 2.5

• makes more efficient use of GPU (why ?)

• pure loading through texture cache always wins

• but 48kB texture cache can only hold links for 48 sites  
(each sites need 8x72 bytes + 8x56 bytes)

G
Fl

op
/s

0

125

250

375

500

rhs
1 2 3 4

K20 estimate K40 estimate K20 measured K40 measured

GTC 2015 | Mathias Wagner | Indiana University |

Ask the profiler

•profile for 4 rhs to see whether caching strategy works:  
 
 
 
 
 
 

Block

[16,4]

[128,4]

[256,4]

[1024,1]

regs

63

63

63

62

occup.

0.49

0.47

0.48

0.48

eligibl.
warps

2.45

2.92

3.08

0.87

IPC

1.92

1.92

1.87

0.77

GTC 2015 | Mathias Wagner | Indiana University |

Ask the profiler

•profile for 4 rhs to see whether caching strategy works:  
 
 
 
 
 
 

•each gauge link loaded once / rhs → best case 75% texture cache hit

Block

[16,4]

[128,4]

[256,4]

[1024,1]

regs

63

63

63

62

occup.

0.49

0.47

0.48

0.48

eligibl.
warps

2.45

2.92

3.08

0.87

IPC

1.92

1.92

1.87

0.77

TC 
Hits %

51.9

74.3

75.9

3.8

L2 (TC) 
Hits %

50.0

5.6

0.0

0.0

GPU Memory System

© 2013, NVIDIA 36

DRAM

L2

SM

L1
Read
only

Const

SM • Once in an SM, data
goes into one of 3
caches/buffers

• Programmer’s choice
– L1 is the “default”

– Read-only, Const
require explicit code

GTC 2015 | Mathias Wagner | Indiana University |

Ask the profiler

•profile for 4 rhs to see whether caching strategy works:  
 
 
 
 
 
 

•each gauge link loaded once / rhs → best case 75% texture cache hit

Block

[16,4]

[128,4]

[256,4]

[1024,1]

regs

63

63

63

62

occup.

0.49

0.47

0.48

0.48

eligibl.
warps

2.45

2.92

3.08

0.87

IPC

1.92

1.92

1.87

0.77

TC 
Hits %

51.9

74.3

75.9

3.8

L2 (TC) 
Hits %

50.0

5.6

0.0

0.0

L1 
Hits %

18.2

31.2

33.9

44.3

L2 (L1) 
Hits %

48.4

37.1

28.9

7.1

GPU Memory System

© 2013, NVIDIA 36

DRAM

L2

SM

L1
Read
only

Const

SM • Once in an SM, data
goes into one of 3
caches/buffers

• Programmer’s choice
– L1 is the “default”

– Read-only, Const
require explicit code

GTC 2015 | Mathias Wagner | Indiana University |

Ask the profiler

•profile for 4 rhs to see whether caching strategy works:  
 
 
 
 
 
 

•each gauge link loaded once / rhs → best case 75% texture cache hit

•better speedup than expected for 4 rhs compared to 1 rhs:

•better utilization of GPU and better use of L2 cache

Block

[16,4]

[128,4]

[256,4]

[1024,1]

regs

63

63

63

62

occup.

0.49

0.47

0.48

0.48

eligibl.
warps

2.45

2.92

3.08

0.87

IPC

1.92

1.92

1.87

0.77

TC 
Hits %

51.9

74.3

75.9

3.8

L2 (TC) 
Hits %

50.0

5.6

0.0

0.0

L1 
Hits %

18.2

31.2

33.9

44.3

L2 (L1) 
Hits %

48.4

37.1

28.9

7.1

Tex+L2 
Hits %

75.9

75.7

75.9

3.8

L1+L2 
Hits %

57.8

56.7

53.0

48.3

GPU Memory System

© 2013, NVIDIA 36

DRAM

L2

SM

L1
Read
only

Const

SM • Once in an SM, data
goes into one of 3
caches/buffers

• Programmer’s choice
– L1 is the “default”

– Read-only, Const
require explicit code

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

4 x 12 kB Texture / read only cache
SchedulerSchedulerSchedulerScheduler

Cache Cache Cache Cache

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

4 x 12 kB Texture / read only cache
SchedulerSchedulerSchedulerScheduler

Cache Cache Cache Cache

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(0…15,0)
(0…15,1)

(0…15,2)
(0…15,3)

(16…31,0)
(16…31,1)

(16…31,2)
(16…31,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(0…15,0)
(0…15,1)

(0…15,2)
(0…15,3)

(16…31,0)
(16…31,1)

(16…31,2)
(16…31,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(64…95,1)(32…64,1)(0…31,1) (96…127,1)

(64…95,0)(32…64,0)(0…31,0) (96…127,0)

(64…95,2)(32…64,2)(0…31,2) (96…127,2)

(64…95,3)(32…64,3)(0…31,3) (96…127,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(64…95,1)(32…64,1)(0…31,1) (96…127,1)

(64…95,0)(32…64,0)(0…31,0) (96…127,0)

(64…95,2)(32…64,2)(0…31,2) (96…127,2)

(64…95,3)(32…64,3)(0…31,3) (96…127,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(64…95,1)(32…64,1)(0…31,1) (96…127,1)

(64…95,0)(32…64,0)(0…31,0) (96…127,0)

(64…95,2)(32…64,2)(0…31,2) (96…127,2)

(64…95,3)(32…64,3)(0…31,3) (96…127,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(64…95,1)(32…64,1)(0…31,1) (96…127,1)

(64…95,0)(32…64,0)(0…31,0) (96…127,0)

(64…95,2)(32…64,2)(0…31,2) (96…127,2)

(64…95,3)(32…64,3)(0…31,3) (96…127,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Can we understand why it works ?

•focus on pure texture cache solution [1,4]

•each thread needs (8 x 72 + 8 x 56)=1024 bytes

•warps (32 threads) assigned to one scheduler

•switching between threads: need only some of the data

•block sizes and warps

•[16,4] → 2 warps

•[128,4] → 16 warps

Tex Cache Tex Cache Tex Cache Tex Cache

(64…95,1)(32…64,1)(0…31,1) (96…127,1)

(64…95,0)(32…64,0)(0…31,0) (96…127,0)

(64…95,2)(32…64,2)(0…31,2) (96…127,2)

(64…95,3)(32…64,3)(0…31,3) (96…127,3)

Block TC 
Hits %

L2 (TC) 
Hits %

Tex+L2 
Hits %

[16,4] 51.9 50.0 75.9

[128,4] 74.3 5.6 75.7

GTC 2015 | Mathias Wagner | Indiana University |

Some Details of the Phi Implementation

•effort lead by Patrick Steinbrecher (Universität Bielefeld → Brookhaven National Lab)

•single accelerator

•optimized for performance with multiple rhs

GTC 2015 | Mathias Wagner | Indiana University |

Some Details of the Phi Implementation

•effort lead by Patrick Steinbrecher (Universität Bielefeld → Brookhaven National Lab)

•single accelerator

•optimized for performance with multiple rhs

•parallelized using OpenMP

•vectorized using intrinsics:

•fuse lattice sites into 512bit vectors

•16 sites with SoA-layout

naive 16-fold site fusion

()
,
,
,

,
,
, ⇥

16 matrices times

16 vectors

|

{z

}

sites

()

real imag

matrix

vector

GTC 2015 | Mathias Wagner | Indiana University |

Impact of Memory Layout and Prefetch

•register pressure limits scaling with #rhs

G
flo

p/
s

0

75

150

225

300

rhs
1 2 3 4 5

16-fold 16-fold + prefetch
8-fold 8-fold + prefetch

GTC 2015 | Mathias Wagner | Indiana University |

Impact of Memory Layout and Prefetch

•register pressure limits scaling with #rhs

•software prefetching improves by about 2x

•hardware prefetching not effective for access pattern

G
flo

p/
s

0

75

150

225

300

rhs
1 2 3 4 5

16-fold 16-fold + prefetch
8-fold 8-fold + prefetch

GTC 2015 | Mathias Wagner | Indiana University |

Impact of Memory Layout and Prefetch

•register pressure limits scaling with #rhs

•software prefetching improves by about 2x

•hardware prefetching not effective for access pattern

•8-fold site fusion

•reduces register pressure

•harder to implement

•small gain for 1 rhs

G
flo

p/
s

0

75

150

225

300

rhs
1 2 3 4 5

16-fold 16-fold + prefetch
8-fold 8-fold + prefetch

GTC 2015 | Mathias Wagner | Indiana University |

Impact of Memory Layout and Prefetch

•register pressure limits scaling with #rhs

•software prefetching improves by about 2x

•hardware prefetching not effective for access pattern

•8-fold site fusion

•reduces register pressure

•harder to implement

•small gain for 1 rhs

G
flo

p/
s

0

75

150

225

300

rhs
1 2 3 4 5

16-fold 16-fold + prefetch
8-fold 8-fold + prefetch

GTC 2015 | Mathias Wagner | Indiana University |

Let’s get ready to rumble

Results for the full conjugate gradient inverter on Xeon Phi and Tesla

GTC 2015 | Mathias Wagner | Indiana University |

Solver performance on KNL and Kepler
ECC, 4 rhs

G
Fl

op
/s

0

100

200

300

400

Lattice Size
16,4 32,8 48,12 32,64 64,16

5110 7120 K20 K20X K40

GTC 2015 | Mathias Wagner | Indiana University |

Solver performance on KNL and Kepler
ECC, 4 rhs

G
Fl

op
/s

0

100

200

300

400

Lattice Size
16,4 32,8 48,12 32,64 64,16

5110 7120 K20 K20X K40

64^3 x 16, ECC

G
Fl

op
/s

0

100

200

300

400

rhs
1 2 3 4 5

5110 7120 K20 K20X K40

GTC 2015 | Mathias Wagner | Indiana University |

Solver performance on KNL and Kepler
ECC, 4 rhs

G
Fl

op
/s

0

100

200

300

400

Lattice Size
16,4 32,8 48,12 32,64 64,16

5110 7120 K20 K20X K40

64^3 x 16, ECC

G
Fl

op
/s

0

100

200

300

400

rhs
1 2 3 4 5

5110 7120 K20 K20X K40

performance relative to K20, 4 rhs

0.00

0.43

0.85

1.28

1.70

5110 7120 K20 K40

peak bw triad bw 32^3x8 CG 64^3x16 CG

GTC 2015 | Mathias Wagner | Indiana University |

Solver performance on KNL and Kepler
ECC, 4 rhs

G
Fl

op
/s

0

100

200

300

400

Lattice Size
16,4 32,8 48,12 32,64 64,16

5110 7120 K20 K20X K40

64^3 x 16, ECC

G
Fl

op
/s

0

100

200

300

400

rhs
1 2 3 4 5

5110 7120 K20 K20X K40

performance relative to K20, 4 rhs

0.00

0.43

0.85

1.28

1.70

5110 7120 K20 K40

peak bw triad bw 32^3x8 CG 64^3x16 CG

GTC 2015 | Mathias Wagner | Indiana University |

Solver performance on KNL and Kepler
ECC, 4 rhs

G
Fl

op
/s

0

100

200

300

400

Lattice Size
16,4 32,8 48,12 32,64 64,16

5110 7120 K20 K20X K40

64^3 x 16, ECC

G
Fl

op
/s

0

100

200

300

400

rhs
1 2 3 4 5

5110 7120 K20 K20X K40

performance relative to K20, 4 rhs

0.00

0.43

0.85

1.28

1.70

5110 7120 K20 K40

peak bw triad bw 32^3x8 CG 64^3x16 CG

GTC 2015 | Mathias Wagner | Indiana University |

Green or blue computing

How energy efficient are the two architectures?

Oh, does anyone wonder about Maxwell in this respect?

GTC 2015 | Mathias Wagner | Indiana University |

Energy consumption

•bandwidth-bound applications are unlikely to hit TDP

•What is the relevant observable?

•energy consumed by the node?

•energy consumed by the accelerator?

•include infrastructure (cooling, …) ?

GTC 2015 | Mathias Wagner | Indiana University |

Energy consumption

•bandwidth-bound applications are unlikely to hit TDP

•What is the relevant observable?

•energy consumed by the node?

•energy consumed by the accelerator?

•include infrastructure (cooling, …) ?

•Take what we can get

•software reported power consumption (nvprof)

•Xeon Phi is a bit more tricky: estimate only

Solver, 4rhs, 32x8

So
lve

r a
vg

. P
ow

er
 [W

]

0

50

100

150

200

250

5110 (est) K20 K40 M6000

TDP CG ECC CG noECC

GTC 2015 | Mathias Wagner | Indiana University |

Performance per Watt
So

lve
r [

G
Fl

op
/s

]

0

120

240

360

480

600

CG ECC CG noECC

5110 (est) K20 K40 M6000

•Solver 4 rhs, 323 x 8

GTC 2015 | Mathias Wagner | Indiana University |

Performance per Watt
So

lve
r [

G
Fl

op
/s

]

0

120

240

360

480

600

CG ECC CG noECC

5110 (est) K20 K40 M6000

•Solver 4 rhs, 323 x 8
preliminary:
code only optimized for Kepler

GTC 2015 | Mathias Wagner | Indiana University |

Performance per Watt
So

lve
r [

G
Fl

op
/s

]

0

120

240

360

480

600

CG ECC CG noECC

5110 (est) K20 K40 M6000

[G
Fl

op
/s

 /
W

]

0

0.6

1.2

1.8

2.4

3

CG ECC CG noECC

5110 (est) K20 K40 M6000

•Solver 4 rhs, 323 x 8
preliminary:
code only optimized for Kepler

GTC 2015 | Mathias Wagner | Indiana University |

Finish

GTC 2015 | Mathias Wagner | Indiana University |

Summary

•Lattice QCD applications reflects triad bandwidth

•equally well performing implementations for GPU / Phi

•multiple rhs achieve can easily speedup solver by 2.5

•Xeon Phi requires vectorization and software prefetches

•GPU uses texture cache

•Caching of vectors likely improved with multiple rhs

performance relative to K20, 4 rhs

0.00

0.50

1.00

1.50

2.00

5110 7120 K20 K40

peak bw triad bw
32^3x8 CG 64^3x16 CG

GTC 2015 | Mathias Wagner | Indiana University |

Summary

•Lattice QCD applications reflects triad bandwidth

•equally well performing implementations for GPU / Phi

•multiple rhs achieve can easily speedup solver by 2.5

•Xeon Phi requires vectorization and software prefetches

•GPU uses texture cache

•Caching of vectors likely improved with multiple rhs

performance relative to K20, 4 rhs

0.00

0.50

1.00

1.50

2.00

5110 7120 K20 K40

peak bw triad bw
32^3x8 CG 64^3x16 CG

[G
Fl

op
/s

 /
W

]

0
0.6
1.2
1.8
2.4

3

5110 (est) K20 K40 M6000

•GK110 about 1.5 times more efficient than KNL

•Maxwell promises another factor 1.5

•multiple rhs about twice as energy efficient

GTC 2015 | Mathias Wagner | Indiana University |

GPU vs Xeon Phi: 
Performance of Bandwidth Bound Applications
with a Lattice QCD Case Study

Contact:
mathwagn@indiana.edu
http://linked.in/mathwagn
@mathwagn

Collaborators:
P. Steinbrecher (Bielefeld U → Brookhaven National Lab)
C. Schmidt (Bielefeld U)
O. Kaczmarek (Bielefeld U)

References:
arXiv:1411.4439 [physics.comp-ph]
arXiv:1409.1510 [cs.DC]

Thanks to:
Jeongnim Kim (Intel) 
Mike Clark (Nvidia)

