
Maximizing Face Detection Performance

Paulius Micikevicius

Developer Technology Engineer, NVIDIA

GTC 2015

(C) 2015 NVIDIA
1

• Outline
– Very brief review of cascaded-classifiers

– Parallelization choices

– Reducing the amount of work

– Improving cache behavior

– Note on feature format

• The points made apply to any cascaded classifier
– Face detection is just one example

(C) 2015 NVIDIA

2

Quick Review
• “Slide” a window around the image

– Use weak classifiers to detect object presence in each position
– I’ll call a position a candidate

• Think of all the (x,y) positions that could be upper-left corners of a candidate window
• Each candidate is independent of all others -> easy opportunity to parallelize

• Cascade of weak-classifiers per candidate
– Some number of stages are cascaded

• Decision to continue/abort is made after each stage

– Each stage contains a number of weak-classifiers
• Evaluate some feature on the window, add its result to the running-stage sum

• Do this at multiple scales
– Classifiers are trained on small windows (~20x20 pixels)
– To detect objects of different sizes, do one of:

• Adjust the size of candidate windows (and scale features)
• Adjust (scale) image to match training window-size

• “Group” the candidates that passed the entire cascade

(C) 2015 NVIDIA
3

Input Image

(C) 2015 NVIDIA
4

Candidates that Pass All Stages

(C) 2015 NVIDIA
5

Candidates After Grouping

(C) 2015 NVIDIA
6

OpenCV haarcascade_frontalface_alt2.xml

• Idea is to reject more and more negatives with successive stages, passing through the positives
• Earlier stages are simpler for perf reasons

– Quickly reject negatives, reducing work for subsequent stages
– False-positives are OK, false-negatives are not OK

 (C) 2015 NVIDIA
7

•20 stages
•1047 weak-classifiers

– 2094 Haar-like features
– Each weak classifier is a 2-

feature tree

•4535 rectangles
– 1747 features contain 2 rects
– 347 features have 3 rects

MBLBP Classifier

• 16 stages
• 451 features

– 4059 rects
– 419 unique features

(C) 2015 NVIDIA
8

Parallelization
• Ample opportunity for parallelization

– Scales are independent of each other
– Each scale has a (large) number of candidates, all

independent

• A number of choices to be made:
– Number of threads per candidate window

• One or multiple threads per candidate

– Cascade stage processing
• All stages in a single or multiple kernel launches

– Scale processing
• In sequence (single stream) or concurrent (multiple streams)

(C) 2015 NVIDIA

9

Parallelization
• Ample opportunity for parallelization

– Scales are independent of each other
– Each scale has a (large) number of candidates, all

independent

• A number of choices to be made:
– Number of threads per candidate window

• One or multiple threads per candidate

– Cascade stage processing
• All stages in a single or multiple kernel launches

– Scale processing
• In sequence (single stream) or concurrent (multiple streams)

(C) 2015 NVIDIA

10

The combination of choices can be
overwhelming, so it helps to get some
intuition for the algorithm operation

Input Image

(C) 2015 NVIDIA
11

Lighter = Candidate Passed More Stages

(C) 2015 NVIDIA
12

Lighter = Candidate Passed More Stages

(C) 2015 NVIDIA
13

Candidates Passing Stages
1920x1080 input image
5 scales:
– 50-200 pixel faces
– 1.25x scaling factor

Process each candidate
– Start with 478K candidates
– 254 pass all stages

(C) 2015 NVIDIA
14

Observations

• Adjacent candidates can pass very different
number of stages

– Different amount of work for adjacent candidates

• The amount of candidates remaining
decreases with the number of stages

– Often each stage rejects ~50% of candidates

• Depends on training parameters, etc.

(C) 2015 NVIDIA

15

Parallelization Choices

(C) 2015 NVIDIA
16

Chosen Parallelization
• One thread per candidate

– A thread iterates through the stages, deciding whether to
continue after each stage
• Loop through the weak-classifiers for each stage

– Simple port: kernel code nearly identical to CPU code
• CPU-only code iterates through the candidates (“slides the window”)
• GPU code launches a thread for each candidate

– GPU kernel code = CPU loop body

• Two challenges:
– Different workloads per candidate (thus per thread)
– Having enough work to saturate a GPU

(C) 2015 NVIDIA
17

Challenge: Different Workloads
• GPU execution refresher:

– Threads are grouped into threadblocks
• Resources (thread IDs, registers, SMEM) are released only when all the threads in a block

terminate

– Instructions are executed per warp (SIMT)
• 32 consecutive threads issue the same instruction
• Different code paths are allowed, threads get “masked out” during the path they don’t

take

• What these mean to cascades:
– If at least one thread in a warp needs to evaluate a stage, all 32 threads take

the same time
• Inactive threads waste math pipelines

– If at least one thread in a threadblock needs to continue evaluating, the
resources of all other threads in that block are not released
• Prevent new threads from starting right away

(C) 2015 NVIDIA
18

Challenge: Different Workloads
• GPU execution refresher:

– Threads are grouped into threadblocks
• Resources (thread IDs, registers, SMEM) are released only when all the threads in a block

terminate

– Instructions are executed per warp (SIMT)
• 32 consecutive threads issue the same instruction
• Different code paths are allowed, threads get “masked out” during the path they don’t

take

What these mean to cascades:
– If at least one thread in a warp needs to evaluate a stage, all 32 threads take

the same time
• Inactive threads waste math pipelines

– If at least one thread in a threadblock needs to continue evaluating, the
resources of all other threads in that block are not released
• Prevent new threads from starting right away

(C) 2015 NVIDIA
19

In
st

ru
ct

io
n

s,
 t

im
e

3 2 1 31 30 0

Challenge: Different Workloads
• GPU execution refresher:

– Threads are grouped into threadblocks
• Resources (thread IDs, registers, SMEM) are released only when all the threads in a block

terminate

– Instructions are executed per warp (SIMT)
• 32 consecutive threads issue the same instruction
• Different code paths are allowed, threads get “masked out” during the path they don’t

take

• What these mean to cascades:
– If at least one thread in a warp needs to evaluate a stage, all 32 threads go

through evaluation instructions
• Inactive threads waste math pipelines

– If at least one thread in a threadblock needs to continue evaluating, the
resources of all other threads in that block are not released
• Prevent new threads from starting right away

(C) 2015 NVIDIA
20

Stage Processing
• Threads decide whether to terminate after each stage
• Could process all stages with a single kernel launch

– Potentially wasting the math and resources

• Could break stages into segments (work “compaction”)
– A sequence of kernel launches, one per segment
– Maintain a work-queue

• Launch only as many threads as there are candidates in the queue
• At the end of each segment append the live candidates to the queue

– Use atomics for updating the index

– Work-queue maintenance adds some overhead
• Read/write queues (writes are atomic)
• Communicate queue size to CPU for subsequent launch

(C) 2015 NVIDIA
21

Stage Processing: Timing Results

• 20-stage classifier, TK1
– 1 segment: 127 ms (1-20 stages)

– 2 segments: 93 ms (1-3, 4-20 stages)

– 3 segments: 84 ms (1-3, 4-7, 8-20 stages)

• 16-stage classifier:
– 1 segment: 134 ms

– 2 segments: 126 ms (1-2, 3-16 stages)
• K40: 9.8 ms, 8.7 ms

 (C) 2015 NVIDIA
22

Why I Didn’t Choose SMEM Here
• SMEM could be used to store the integral image tile needed by a

threadblock, but:
– SMEM makes scaling features impractical

• SMEM overhead becomes prohibitive, forcing us to scale images

– SMEM precludes work-compaction:
• A threadblock must cover a contiguous region to read all the inputs

• Preliminary test with another classifier showed very small
difference between using SMEM or just reading via texture cache
– And the texture code was still scaling image (could have been avoided)
– Can use either texture functions, or __ldg() with “regular” pointers

• Caution: the evidence isn’t conclusive yet
– Classifiers that benefit little from compaction may benefit from SMEM

(C) 2015 NVIDIA

23

Why I Didn’t Choose SMEM Here
• SMEM could be used to store the integral image tile needed by a

threadblock, but:
– SMEM makes scaling features impractical

• SMEM overhead becomes prohibitive, forcing us to scale images

– SMEM precludes work-compaction:
• A threadblock must cover a contiguous region to read all the inputs

• Preliminary test with another classifier showed very small
difference between using SMEM or just reading via texture cache
– And the texture code was still scaling image (could have been avoided)
– Can use either texture functions, or __ldg() with “regular” pointers

• Caution: the evidence isn’t conclusive yet
– Classifiers that benefit little from compaction may benefit from SMEM

(C) 2015 NVIDIA

24

Why I Didn’t Choose SMEM Here
• SMEM could be used to store the integral image tile needed by a

threadblock, but:
– SMEM makes scaling features impractical

• SMEM overhead becomes prohibitive, forcing us to scale images

– SMEM precludes work-compaction:
• A threadblock must cover a contiguous region to read all the inputs

• Preliminary test with another classifier showed very small
difference between using SMEM or just reading via texture cache
– And the texture code was still scaling image (could have been avoided)
– Can use either texture functions, or __ldg() with “regular” pointers

• Caution: the evidence isn’t conclusive yet
– Classifiers that benefit little from compaction may benefit from SMEM

(C) 2015 NVIDIA

25

Challenge: Enough Work to Saturate a GPU

• We start out with 100s of thousands of candidates
– Plenty to saturate even the biggest GPUs

• We are left with fewer and fewer candidates as
stages reject them
– Even 1-SM GPUs (TK1) will start idling

– Bigger GPUs will start idling sooner

• Two solutions:
– Process scales concurrently

– Switch parallelization after some number of stages

(C) 2015 NVIDIA

26

Challenge: Enough Work to Saturate a GPU

• We start out with 100s of thousands of candidates
– Plenty to saturate even the biggest GPUs

• We are left with fewer and fewer candidates as
stages reject them
– Even 1-SM GPUs (TK1) will start idling

– Bigger GPUs will start idling sooner

• Two solutions:
– Process scales concurrently

– Switch parallelization after some number of stages

(C) 2015 NVIDIA

27

Challenge: Enough Work to Saturate a GPU

• We start out with 100s of thousands of candidates
– Plenty to saturate even the biggest GPUs

• We are left with fewer and fewer candidates as
stages reject them
– Even 1-SM GPUs (TK1) will start idling

– Bigger GPUs will start idling sooner

• Two solutions:
– Process scales concurrently

– Switch parallelization after some number of stages

(C) 2015 NVIDIA

28

Concurrent Scale Processing
• Issue kernels for different scales into different streams

– Scales are independent
– Maintain a different work-queue for each scale

• So that features can be properly scaled

• Orthogonal to work-compaction:
– Loop through the segments
– For each segment launch as many kernels as you have scales

• GPU stream support in hw:
– TK1 supports 4 streams
– Other GPUs (Kepler and more recent) support 32 streams
– More streams can be used in sw, but will result in stream aliasing

(C) 2015 NVIDIA
29

TK1: 16-stage MBLBP Classifier

(C) 2015 NVIDIA
30

Scale-1 Scale-2 Scale-3 Scale-4 Scale-0

Sequential

Concurrent

Concurrent
2 segments

K40: 16-stage MBLBP Classifier

(C) 2015 NVIDIA
31

8.3 ms

2-segments
6.1 ms

9.7 ms

20-stage Haar-like

(C) 2015 NVIDIA
32

5 scales of stages 4-7 5 scales of stages 0-3 stages 8-20

K40: 7.2 ms

TK1: 78.9 ms

Switching Parallelizations
• One thread per candidate:

– Pro: candidates go through minimal stage count
– Con: GPU becomes latency limited

• After a number of stages there isn’t enough work to hide latency
– Very rough rule of thumb: fewer than 512 threads per SM

• GPU becomes underutilized

• Alternative parallelization:
– Use multiple threads per candidate, say a warp

• A warp evaluates 32 features in parallel
• Performs a reduction (or prefix sum) to compute stage sum
• Power-of-2 up to a warp is nice because of the shfl/vote instructions

– May do unnecessary work
• A thread evaluates a feature it wouldn’t have reached sequentially

(C) 2015 NVIDIA
33

Switching Parallelizations
• Idea: change parallelization when only a few 100 candidates

remain
– Prior to that continue to use 1 thread/candidate

• Avoids inter-thread communication and unnecessary work

• Preliminary work on a different classifier:
– A few 100 features
– Speedup:

• K40: 1.6-1.75x (depending on image)
• TK1: 1.0x

– Results suggest that:
• Alternative parallelization helps when you have lots of stages with too few

candidates to saturate the GPU
• Confirmed when TK1 ran a classifier with even more stages

(C) 2015 NVIDIA
34

Work Reduction

(C) 2015 NVIDIA
35

Reduce the Initial Number of Candidates

• Less work -> less time
– Will reach the point of non-saturated GPU sooner

– Makes concurrent scale processing even more useful

• Two ways to reduce the initial candidate count:
– Use a mask to not consider some candidates

• ROI, skin-tone, etc.

– “Skip” candidates (stride > 1)
• Post-process neighborhoods of rectangles that didn’t get grouped

(C) 2015 NVIDIA
36

Skin Tone Mask
• Race invariant, simply needs a white-balanced camera

• Color density plots for asian, african, and caucasian skin
from http://www.cs.rutgers.edu/~elgammal/pub/skin.pdf:

(C) 2015 NVIDIA
37

Candidate Mask

• Mask pixel at (x,y) corresponds to upper-left corner of a candidate window
– Shown for scale-0 (58-pixel face)
– A candidate window is masked out (black) if fewer than 50% of its pixels were not skin-toned
– 76% of candidates were rejected at this scale

(C) 2015 NVIDIA
38

More Candidate Masks

(C) 2015 NVIDIA
39

Skin-tone Masking
• A bit of extra work:

– Classify each input pixel as skin-toned or not
• 5-10 math instructions in RGB or YUV
• Can be done in the same kernel as RGB->luminance conversion

– Compute integral image of pixel classes
– Use the integral image to reject candidates when creating the initial work-queue for detection

• Experimental data:
– TK1:

• No mask, no streams, no segments: 134.5 ms
• Mask, no streams, no segments: 34.9 ms (~4x speedup, as expected)
• Mask, streams, no segments: 34.4 ms
• Mask, streams, segments: 34.0 ms

– K40:
• No mask, no streams, no segments: 9.8 ms
• Mask, no streams, no segments: 4.3 ms
• Mask, streams, no segments: 2.8 ms
• Mask, streams, segments: 2.1 ms

(C) 2015 NVIDIA
40

(~2.3x speedup -> less than 4x expected
 indicates GPU is idling)

Improving Cache Behavior

(C) 2015 NVIDIA
41

Improving Cache Behavior
• Till now the integral image was 1921x1081
• First scale (scale-0) is 2.44x:

– Training window is 24 pixels
– Smallest face of interest is 50 pixels, scaling factor is 1.25x
– Implies that a 787x443 integral image is sufficient

• ~6x smaller than original size

• Smaller image footprint can improve cache behavior
– In this case it’s the read-only (aka “read-only”) cache on the SM
– Reduces requests to L2

• Lower latency
• Less bandwidth-pressure
• higher L2 hit-rate -> less traffic to DRAM

(C) 2015 NVIDIA
42

Empirical Data
• 16-stage MBLBP classifier

– 2 segments, concurrent scale processing

• TK1:
– Mask: 2.12x speedup (34 ms -> 16 ms)
– No mask: 2.33x speedup (126 ms -> 54 ms)

• K40:
– Mask: 1.27x speedup (2.1 ms -> 1.7 ms)
– No mask: 1.56x speedup (7.5 ms -> 4.8 ms)

(C) 2015 NVIDIA
43

Benefits of Downscaling

(C) 2015 NVIDIA
44

• Reduced requests to L2 by ~3x on both GPUs
– TK1 was being limited by L2 bandwidth:

• Before downscaling: 40-93% of L2 theory
• After downscaling: 28-74%

– K40 was sensitive to L2 bandwidth:
• Before downscaling: 12-70% of theory
• After downscaling: 5-35%
• K40 has 1.6x more L2 bandwidth/SM than TK1

– Thus less sensitive to bandwidth for this application than TK1

• Improved L2 hit-rate (lowered traffic to DRAM)
– TK1: from 5-55% to 54-98%
– K40: from 44-99% to 98-99%

• K40 has 12x more L2 than TK1
– Thus able to achieve a higher hit-rate than TK1, reducing traffic to DRAM

Benefits of Downscaling
• Reduced requests to L2 by ~3x on both GPUs

– TK1 was being limited by L2 bandwidth:
• Before downscaling: 40-93% of L2 theory
• After downscaling: 28-74%

– K40 was sensitive to L2 bandwidth:
• Before downscaling: 12-70% of theory
• After downscaling: 5-35%
• K40 has 1.6x more L2 bandwidth/SM than TK1

– Thus less sensitive to bandwidth for this application than TK1

• Improved L2 hit-rate (lowered traffic to DRAM)
– TK1: from 5-55% to 54-98%
– K40: from 44-99% to 98-99%

• K40 has 12x more L2 than TK1
– Thus able to achieve a higher hit-rate than TK1, reducing traffic to DRAM

 (C) 2015 NVIDIA
45

Quick Summary
• We’ve examined several ways to improve performance

– Breaking stages into segments: up to 1.3x
– Concurrent processing of scales: 1.2 - 2x

• Can be higher, depending on classifier and GPU

– Downscaling to the first scale first: 1.3 - 2.3x
– Masking (ROI): ~3x

• Depends on content and masking approach

• All of the above use the same exact kernel code
– Adjust only image or launch parameters
– Together improved cascade time:

• TK1: from 134 ms to 16 ms (8.4x speedup)
• K40: from 9.8 ms to 1.7 ms (5.8x speedup)

• Switching parallelization after a number of stages
– Potential further speedup of ~1.5x

(C) 2015 NVIDIA

46

Note on Feature Format

(C) 2015 NVIDIA
47

Feature Storage Format
• Many features are rectangle based
• Two approaches to storing features in memory:

– Geometry:
• coordinates/sizes within a window

– Pointers:
• Popular in OpenCV and other codes
• Compute pointers to the vertices of window 0

– Window-0: the first window (top-left corner, for example)

• Vertices for window k are addressed by adding offset k to these
pointers
– Pointer math per vertex: 64-bit multiply-add

» A dependent sequence of 2+ instructions on GPU

(C) 2015 NVIDIA

48

MB-LBP Features
• Only one pattern: 3x3 tile of rectangles
• Pointers:

– Need 16 pointers: 128 B per feature
– 32 or more address instructions per window

• Geometry:
– 4 values: (x,y) of top-left corner, width, height
– 16 bytes per feature when storing ints

• could be as low as 4B when storing chars, but would require bit-
extraction instructions

– Address math: ~50 instructions

(C) 2015 NVIDIA
49

Haar-like Features
• 5 fundamental patterns (2 or 3 rectangles)
• Pointers:

– 6, 8, or 9 pointers: 48-72 bytes per feature
– 12-18 or more instructions per window

• Geometry:
– Several choices:

• Store each rectangle (2 or 3 per feature)
• Store vertices (would need 5 categories)

– When storing each rectangle
• 4 values: (x,y) of top-left corner, width, height
• All 4 values are relative to training window

– Usually 20x20 to 32x32 in size
– So, could store as few 4B (4 chars), 16 B if storing ints

» 4 chars would require bit-extraction instructions

• 3x16B = 48 B per feature
• ~3x16 = 48 instructions per window

(C) 2015 NVIDIA
50

Pointers vs Geometry
• When processing multiple scales:

– Geometry places no requirements when processing
multiple scales

– Pointers require one of:
• Compute pointers for each scale
• Scale image and compute integral for each scale

• Pointers also require one of:
– Additional buffer for the integral image

• Buffer to be reused by all images

– Compute pointers for each input image

(C) 2015 NVIDIA
51

MBLBP Performance

• Geometry was 3.5x faster than pointers

– Quick test: no segments, no streams, no mask

• All other numbers in this presentation were
measured with “geometry”

(C) 2015 NVIDIA
52

Feature Multiples

• Sometimes the same feature is used in several stages
• Two choices:

– Have multiple copies of the feature in memory
• Simple array traversal
• Consumes more memory

– Add a level of indirection:
• Each feature is stored exactly once
• Maintain an array of indices

– Map weak-classifiers to unique features
– Approach implemented in OpenCV

• Preference for performance: store multiple copies, avoid indirection
– Indirection adds 100s-1000s cycles of latency, adds to bandwidth pressure as well

• Read the index from memory
• Use the index to read feature from memory

– Typically only a very small percentage of features are replicated
• Negligible impact on memory consumed

(C) 2015 NVIDIA
53

Summary
• Cascade performance for a 16-stage MBLBP classifier:

– TK1: 16.0 ms
– K40: 1.6 ms
– Can likely be improved further (these are without switched-

parallelization)

• We looked at:
– How to parallelize cascaded classifiers
– How to reduce input to a cascade
– How to maximize cache performance for cascades
– How to store features in memory
– Performance impact of the above:

• Varies with classifier, detection parameters and GPU
• Good choices can lead to O(10) speedup over the naïve approach

 (C) 2015 NVIDIA
54

