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• Outline 
– Very brief review of cascaded-classifiers 

– Parallelization choices 

– Reducing the amount of work 

– Improving cache behavior 

– Note on feature format 

• The points made apply to any cascaded classifier 
– Face detection is just one example 
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Quick Review 
• “Slide” a window around the image 

– Use weak classifiers to detect object presence in each position 
– I’ll call a position a candidate 

• Think of all the (x,y) positions that could be upper-left corners of a candidate window 
• Each candidate is independent of all others -> easy opportunity to parallelize 

• Cascade of weak-classifiers per candidate 
– Some number of stages are cascaded 

• Decision to continue/abort is made after each stage 

– Each stage contains a number of weak-classifiers 
• Evaluate some feature on the window, add its result to the running-stage sum 

• Do this at multiple scales 
– Classifiers are trained on small windows (~20x20 pixels) 
– To detect objects of different sizes, do one of: 

• Adjust the size of candidate windows (and scale features) 
• Adjust (scale) image to match training window-size 

• “Group” the candidates that passed the entire cascade 
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Input Image 
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Candidates that Pass All Stages 
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Candidates After Grouping 
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OpenCV haarcascade_frontalface_alt2.xml 

• Idea is to reject more and more negatives with successive stages, passing through the positives 
• Earlier stages are simpler for perf reasons 

– Quickly reject negatives, reducing work for subsequent stages 
– False-positives are OK, false-negatives are not OK 
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•20 stages 
•1047 weak-classifiers 

– 2094 Haar-like features 
– Each weak classifier is a 2-

feature tree 

•4535 rectangles 
– 1747 features contain 2 rects 
– 347 features have 3 rects 



MBLBP Classifier 

• 16 stages 
• 451 features 

– 4059 rects 
– 419 unique features 
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Parallelization 
• Ample opportunity for parallelization 

– Scales are independent of each other 
– Each scale has a (large) number of candidates, all 

independent 

• A number of choices to be made: 
– Number of threads per candidate window 

• One or multiple threads per candidate 

– Cascade stage processing 
• All stages in a single or multiple kernel launches 

– Scale processing 
• In sequence (single stream) or concurrent (multiple streams) 
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The combination of choices can be 
overwhelming, so it helps to get some 
intuition for the algorithm operation 



Input Image 
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Lighter = Candidate Passed More Stages 
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Lighter = Candidate Passed More Stages 
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Candidates Passing Stages 
1920x1080 input image 
5 scales:  
– 50-200 pixel faces 
– 1.25x scaling factor 

Process each candidate 
– Start with 478K candidates 
– 254 pass all stages 
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Observations 

• Adjacent candidates can pass very different 
number of stages 

– Different amount of work for adjacent candidates 

• The amount of candidates remaining 
decreases with the number of stages 

– Often each stage rejects ~50% of candidates 

• Depends on training parameters, etc. 
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Parallelization Choices 
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Chosen Parallelization 
• One thread per candidate 

– A thread iterates through the stages, deciding whether to 
continue after each stage 
• Loop through the weak-classifiers for each stage 

– Simple port: kernel code nearly identical to CPU code 
• CPU-only code iterates through the candidates (“slides the window”) 
• GPU code launches a thread for each candidate 

– GPU kernel code = CPU loop body 

• Two challenges: 
– Different workloads per candidate (thus per thread) 
– Having enough work to saturate a GPU 
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Challenge: Different Workloads 
• GPU execution refresher: 

– Threads are grouped into threadblocks 
• Resources (thread IDs, registers, SMEM) are released only when all the threads in a block 

terminate 

– Instructions are executed per warp (SIMT) 
• 32 consecutive threads issue the same instruction 
• Different code paths are allowed, threads get “masked out” during the path they don’t 

take 

• What these mean to cascades: 
– If at least one thread in a warp needs to evaluate a stage, all 32 threads take 

the same time 
• Inactive threads waste math pipelines 

– If at least one thread in a threadblock needs to continue evaluating, the 
resources of all other threads in that block are not released 
• Prevent new threads from starting right away 
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Challenge: Different Workloads 
• GPU execution refresher: 

– Threads are grouped into threadblocks 
• Resources (thread IDs, registers, SMEM) are released only when all the threads in a block 

terminate 

– Instructions are executed per warp (SIMT) 
• 32 consecutive threads issue the same instruction 
• Different code paths are allowed, threads get “masked out” during the path they don’t 

take 

• What these mean to cascades: 
– If at least one thread in a warp needs to evaluate a stage, all 32 threads go 

through evaluation instructions 
• Inactive threads waste math pipelines 

– If at least one thread in a threadblock needs to continue evaluating, the 
resources of all other threads in that block are not released 
• Prevent new threads from starting right away 
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Stage Processing 
• Threads decide whether to terminate after each stage 
• Could process all stages with a single kernel launch 

– Potentially wasting the math and resources 

• Could break stages into segments (work “compaction”) 
– A sequence of kernel launches, one per segment 
– Maintain a work-queue 

• Launch only as many threads as there are candidates in the queue 
• At the end of each segment append the live candidates to the queue 

– Use atomics for updating the index 

– Work-queue maintenance adds some overhead 
• Read/write queues (writes are atomic) 
• Communicate queue size to CPU for subsequent launch 
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Stage Processing: Timing Results 

• 20-stage classifier, TK1 
– 1 segment: 127 ms  (1-20 stages) 

– 2 segments: 93 ms  (1-3, 4-20 stages) 

– 3 segments: 84 ms  (1-3, 4-7, 8-20 stages) 

• 16-stage classifier: 
– 1 segment: 134 ms 

– 2 segments: 126 ms     (1-2, 3-16 stages) 
• K40: 9.8 ms, 8.7 ms 
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Why I Didn’t Choose SMEM Here 
• SMEM could be used to store the integral image tile needed by a 

threadblock, but: 
– SMEM makes scaling features impractical 

• SMEM overhead becomes prohibitive, forcing us to scale images 

– SMEM precludes work-compaction: 
• A threadblock must cover a contiguous region to read all the inputs 

• Preliminary test with another classifier showed very small 
difference between using SMEM or just reading via texture cache 
– And the texture code was still scaling image (could have been avoided) 
– Can use either texture functions, or __ldg() with “regular” pointers 

• Caution: the evidence isn’t conclusive yet 
– Classifiers that benefit little from compaction may benefit from SMEM 
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Challenge: Enough Work to Saturate a GPU 

• We start out with 100s of thousands of candidates 
– Plenty to saturate even the biggest GPUs 

• We are left with fewer and fewer candidates as 
stages reject them 
– Even 1-SM GPUs (TK1) will start idling 

– Bigger GPUs will start idling sooner 

• Two solutions: 
– Process scales concurrently 

– Switch parallelization after some number of stages 
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Concurrent Scale Processing 
• Issue kernels for different scales into different streams 

– Scales are independent 
– Maintain a different work-queue for each scale 

• So that features can be properly scaled 

• Orthogonal to work-compaction: 
– Loop through the segments 
– For each segment launch as many kernels as you have scales 

• GPU stream support in hw: 
– TK1 supports 4 streams 
– Other GPUs (Kepler and more recent) support 32 streams 
– More streams can be used in sw, but will result in stream aliasing 
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TK1: 16-stage MBLBP Classifier 

(C) 2015 NVIDIA 
30 

Scale-1 Scale-2 Scale-3 Scale-4 Scale-0 

Sequential 

Concurrent 

Concurrent 
2 segments 



K40: 16-stage MBLBP Classifier 
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8.3 ms 

2-segments 
6.1 ms 

9.7 ms 



20-stage Haar-like 
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5 scales of stages 4-7 5 scales of stages 0-3 stages 8-20 

K40:  7.2 ms 

TK1:  78.9 ms 



Switching Parallelizations 
• One thread per candidate: 

– Pro: candidates go through minimal stage count 
– Con: GPU becomes latency limited 

• After a number of stages there isn’t enough work to hide latency 
– Very rough rule of thumb: fewer than 512 threads per SM 

• GPU becomes underutilized 

• Alternative parallelization: 
– Use multiple threads per candidate, say a warp 

• A warp evaluates 32 features in parallel 
• Performs a reduction (or prefix sum) to compute stage sum 
• Power-of-2 up to a warp is nice because of the shfl/vote instructions 

– May do unnecessary work 
• A thread evaluates a feature it wouldn’t have reached sequentially 
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Switching Parallelizations 
• Idea: change parallelization when only a few 100 candidates 

remain 
– Prior to that continue to use 1 thread/candidate 

• Avoids inter-thread communication and unnecessary work 

• Preliminary work on a different classifier: 
– A few 100 features 
– Speedup: 

• K40:  1.6-1.75x (depending on image) 
• TK1:  1.0x 

– Results suggest that: 
• Alternative parallelization helps when you have lots of stages with too few 

candidates to saturate the GPU 
• Confirmed when TK1 ran a classifier with even more stages 
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Work Reduction 
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Reduce the Initial Number of Candidates 

• Less work -> less time 
– Will reach the point of non-saturated GPU sooner 

– Makes concurrent scale processing even more useful 

• Two ways to reduce the initial candidate count: 
– Use a mask to not consider some candidates 

• ROI, skin-tone, etc. 

– “Skip” candidates (stride > 1) 
• Post-process neighborhoods of rectangles that didn’t get grouped 
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Skin Tone Mask 
• Race invariant, simply needs a white-balanced camera 
 

• Color density plots for asian, african, and caucasian skin 
from http://www.cs.rutgers.edu/~elgammal/pub/skin.pdf: 
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Candidate Mask 

• Mask pixel at (x,y) corresponds to upper-left corner of a candidate window 
– Shown for scale-0 (58-pixel face) 
– A candidate window is masked out (black) if fewer than 50% of its pixels were not skin-toned 
– 76% of candidates were rejected at this scale 
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More Candidate Masks 
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Skin-tone Masking 
• A bit of extra work: 

– Classify each input pixel as skin-toned or not 
• 5-10 math instructions in RGB or YUV 
• Can be done in the same kernel as RGB->luminance conversion 

– Compute integral image of pixel classes 
– Use the integral image to reject candidates when creating the initial work-queue for detection 

• Experimental data: 
– TK1: 

• No mask, no streams, no segments: 134.5 ms 
• Mask, no streams, no segments: 34.9 ms     (~4x speedup, as expected) 
• Mask, streams, no segments: 34.4 ms 
• Mask, streams, segments: 34.0 ms 

 

– K40: 
• No mask, no streams, no segments: 9.8 ms 
• Mask, no streams, no segments: 4.3 ms  
• Mask, streams, no segments: 2.8 ms 
• Mask, streams, segments: 2.1 ms 
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(~2.3x speedup -> less than 4x expected 
                                 indicates GPU is idling) 



Improving Cache Behavior 
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Improving Cache Behavior 
• Till now the integral image was 1921x1081 
• First scale (scale-0) is 2.44x: 

– Training window is 24 pixels 
– Smallest face of interest is 50 pixels, scaling factor is 1.25x 
– Implies that a 787x443 integral image is sufficient 

• ~6x smaller than original size 

• Smaller image footprint can improve cache behavior 
– In this case it’s the read-only (aka “read-only”) cache on the SM 
– Reduces requests to L2 

• Lower latency 
• Less bandwidth-pressure 
• higher L2 hit-rate -> less traffic to DRAM 
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Empirical Data 
• 16-stage MBLBP classifier 

– 2 segments, concurrent scale processing 

• TK1: 
– Mask: 2.12x speedup (  34 ms -> 16 ms) 
– No mask: 2.33x speedup (126 ms -> 54 ms) 

• K40:  
– Mask: 1.27x speedup (2.1 ms -> 1.7 ms) 
– No mask: 1.56x speedup (7.5 ms -> 4.8 ms) 
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Benefits of Downscaling 
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• Reduced requests to L2 by ~3x on both GPUs 
– TK1 was being limited by L2 bandwidth: 

• Before downscaling: 40-93% of L2 theory 
• After downscaling: 28-74% 

– K40 was sensitive to L2 bandwidth: 
• Before downscaling: 12-70% of theory 
• After downscaling: 5-35% 
• K40 has 1.6x more L2 bandwidth/SM than TK1 

– Thus less sensitive to bandwidth for this application than TK1 

• Improved L2 hit-rate (lowered traffic to DRAM) 
– TK1:  from 5-55% to 54-98% 
– K40:  from 44-99% to 98-99% 

• K40 has 12x more L2 than TK1 
– Thus able to achieve a higher hit-rate than TK1, reducing traffic to DRAM 
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Quick Summary 
• We’ve examined several ways to improve performance 

– Breaking stages into segments:  up to 1.3x 
– Concurrent processing of scales: 1.2 - 2x 

• Can be higher, depending on classifier and GPU 

– Downscaling to the first scale first: 1.3 - 2.3x 
– Masking (ROI): ~3x 

• Depends on content and masking approach 

• All of the above use the same exact kernel code 
– Adjust only image or launch parameters 
– Together improved cascade time: 

• TK1: from 134 ms to 16 ms (8.4x speedup) 
• K40: from 9.8 ms to 1.7 ms (5.8x speedup) 

• Switching parallelization after a number of stages 
– Potential further speedup of ~1.5x 
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Note on Feature Format  
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Feature Storage Format 
• Many features are rectangle based 
• Two approaches to storing features in memory: 

– Geometry:  
• coordinates/sizes within a window 

– Pointers: 
• Popular in OpenCV and other codes 
• Compute pointers to the vertices of window 0 

– Window-0: the first window (top-left corner, for example) 

• Vertices for window k are addressed by adding offset k to these 
pointers 
– Pointer math per vertex: 64-bit multiply-add 

» A dependent sequence of 2+ instructions on GPU 
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MB-LBP Features 
• Only one pattern: 3x3 tile of rectangles 
• Pointers: 

– Need 16 pointers: 128 B per feature 
– 32 or more address instructions per window 

• Geometry: 
– 4 values: (x,y) of top-left corner, width, height 
– 16 bytes per feature when storing ints 

• could be as low as 4B when storing chars, but would require bit-
extraction instructions 

– Address math: ~50 instructions 
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Haar-like Features 
• 5 fundamental patterns (2 or 3 rectangles) 
• Pointers: 

– 6, 8, or 9 pointers: 48-72 bytes per feature 
– 12-18 or more instructions per window 

• Geometry: 
– Several choices: 

• Store each rectangle (2 or 3 per feature) 
• Store vertices (would need 5 categories) 

– When storing each rectangle 
• 4 values: (x,y) of top-left corner, width, height 
• All 4 values are relative to training window 

– Usually 20x20 to 32x32 in size 
– So, could store as few 4B (4 chars), 16 B if storing ints 

» 4 chars would require bit-extraction instructions 

• 3x16B = 48 B per feature 
• ~3x16 = 48 instructions per window 
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Pointers vs Geometry 
• When processing multiple scales: 

– Geometry places no requirements when processing 
multiple scales 

– Pointers require one of: 
• Compute pointers for each scale 
• Scale image and compute integral for each scale 

• Pointers also require one of: 
– Additional buffer for the integral image 

• Buffer to be reused by all images 

– Compute pointers for each input image 
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MBLBP Performance 

• Geometry was 3.5x faster than pointers 

– Quick test: no segments, no streams, no mask 

• All other numbers in this presentation were 
measured with “geometry” 
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Feature Multiples 

• Sometimes the same feature is used in several stages 
• Two choices: 

– Have multiple copies of the feature in memory 
• Simple array traversal 
• Consumes more memory 

– Add a level of indirection: 
• Each feature is stored exactly once 
• Maintain an array of indices 

– Map weak-classifiers to unique features 
– Approach implemented in OpenCV 

• Preference for performance: store multiple copies, avoid indirection 
– Indirection adds 100s-1000s cycles of latency, adds to bandwidth pressure as well 

• Read the index from memory 
• Use the index to read feature from memory 

– Typically only a very small percentage of features are replicated 
• Negligible impact on memory consumed 
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Summary 
• Cascade performance for a 16-stage MBLBP classifier: 

– TK1: 16.0 ms 
– K40: 1.6 ms 
– Can likely be improved further (these are without switched-

parallelization) 

• We looked at: 
– How to parallelize cascaded classifiers 
– How to reduce input to a cascade 
– How to maximize cache performance for cascades 
– How to store features in memory 
– Performance impact of the above: 

• Varies with classifier, detection parameters and GPU 
• Good choices can lead to O(10) speedup over the naïve approach 
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