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 Some Things Never Change (GPUs vs the World) 

 How Best to Exploit GPUs 

 Molecular Dynamics or Matrix Factorization? 

 Determinism and Numerical Stability 

 Dynamic Range for both MD and NNs 

 Latest AMBER PME Numbers 

 Conclusions 

 



 Brawny cores still beat wimpy cores, most of the time 
 
     Urs Hölzle 
     Google 
 

 “Slower but energy efficient “wimpy” cores 
only win for general workloads if their single-core 
speed is reasonably close to that of mid-range 
“brawny” cores.” 



 GeForce GTX Titan X: 3,072 “CORES!” 

 GeForce GTX 980: 2,048 “CORES!” 

 

One SIMD Lane == One Core 

 

By this definition, GPUs are really wimpy… 

 
 

 

 

(And a Haswell CPU has up to 144 “cores” making it really, really wimpy, but I digress) 



Core: a set of processing elements that share an L1 
cache (or equivalent) and register file 

 

Processor: One or more cores on a single die 

 

 

 

 
(I personally prefer cores with more cache and registers per thread over “brawny” vs “wimpy”) 



Fast CPU: Intel Xeon E5-2699 v3 Haswell 2.3 GHZ (3.6 
GHz Turbo Boost) 45 MB L3 Cache LGA 2011-v3 145W 
18-Core Server Processor ($4,632.00 on Amazon) 

 

Peak GFLOPS:  ~662 

 

GFLOPS/W:  ~4.6 

 

GFLOPS/Core:  ~37 

 

GFLOPS/$:  ~0.14 



Fast GPU: NVIDIA Ge Force GTX Titan X, 24-core, 
1088 GHz TDP 250W ($999 announced) 

 

Peak GFLOPS:  ~6,695 

 

GFLOPS/W:  ~27 

 

GFLOPS/Core:  ~280 

 

GFLOPS/$: ~6.7 

 









*But then why exactly are you running it on 1,000+ 
machines at once**. 

 

**Because you’re I/O bound?  Well then you’re 
just wasting power using “Brawny” cores, spend 
your money on better hard drives and networking. 

 



“FPGAs are (up to) 10x 
faster and up to 50x 
more power-efficient 
than CPUs!!!!” 
 
 



FPGA:   Altera Arria 10 (1150GX) 

 

Peak GFLOPS:  1,366* 

 

GFLOPS/W:  40** 

 

 

 
 

 

*https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf 

**http://www.enterprisetech.com/2015/02/23/microsoft-accelerates-datacenter-with-fpgas/ 



 Maybe 1.5-2x better Perf/W 

 1.37 TFLOPS is something between a GF110 
and a GK104 

 You can only stuff so many of these things in a 
server (8 or so), is power your real constraint? 

 Nervana is getting ~3.7 TFLOPs (out of ~4.6) 
running CNNs on GM204 





“2x CPU performance* 
with ~1.5x the power-
efficiency of a GPU” 

*~11x better GFLOPS/W than CPUs, which is nice 



Good News for FPGAs 

 Altera is adding OpenCL support to FPGAs 

 

Bad News for FPGAs (FUD) 

 Compilation time is hours versus seconds 

 No FPGA cuFFT, cuBLAS, cuRand, etc libraries 

 You can buy GPUs on Amazon 

 Linux/Windows GPU drivers freely available 



 Avoid SandyBridge CPUs! 

 They only support PCIE Gen 2 (1/2 PCIE Gen 3) 

 They don’t work reliably with GM2xx 

 

 Avoid GTX 970 (~$200 < GTX 980) 

 Last 512MB has BW issues 

 Keep your life simple, time is money 

 

 Avoid crazily overclocked GPUs 

 



CPU 

8747 PCIE Switch 8747 PCIE Switch 

GPU 0 GPU 1 GPU 2 GPU 3 

16x 16x 16x 16x 

16x 16x 



 Asus P9X79-E WS MB ($500) plus Intel Core-i7 
4820 (Ivybridge) CPU ($320) 

 

 Asus X99-E WS MB ($520) plus Intel Core-i7 
5930K (Haswell) CPU ($560) 

 

 1st alternative saves about $260 

 

 25 TFLOPs for $7,000! (<50% of Digits DevBox) 



Dell C4130 1U Quad-GPU Server 
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CPU 

8747 PCIE Switch 8747 PCIE Switch 

GPU 0 GPU 1 GPU 2 GPU 3 



GPU 0 GPU 1 

GPU 2 GPU 3 



 Install a recent build of OpenMPI or MPICH2 
(do not install what comes with linux distros) 

 Do not enable GPUDirect 

 Do not use MPI 2.x primitives 

 Use MPI for process control and 
synchronization 

 Use Interprocess P2P within CUDA to send 
messages between the GPUs.  I repeat, do not 
rely on GPUDirect 



 O(N2)   Embarrassingly Parallel (Learn CUDA) 

 

 

 

 O(N log N)  Annoyingly Parallel (Hire an Expert) 

 

 

 

 O(N)   Likely I/O-Bound (don’t bother) 





 On a CPU, the dominant performance spike is: 
 
 
 
 
 
O(N2) Calculation 
 
If we naively ported this to a GPU, it would die the death of a 
thousand race conditions and memory overwrites 
 
Solution: Map the problem into many subtasks and reduce the 
results 

for (i =0; i < N; i++) 
    for (j = i + 1; j < N; j++) 
         Calculate fij, fji; 



Subdivide force matrix into 3 
classes of independent tiles 
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 The smallest unit of execution in a GPU 

 Up through GM2xx, it’s groups of 32 
consecutive threads within the same core that 
execute in lockstep 

 GPU cores each run 8-64 warps at once 

 May change in the future 

 “lock-free computing” 



__shfl: Exchanges data between warp threads 

 

 

__ballot: Each bit gives state of a predicate for each 
  warp thread 

 

 

__all:  True if predicate is true across all warp  
  threads 

 

 

_any:  True if predicate is true on any warp thread 
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Each warp in the GPU cores consumes 

them… 



  A4          A5          A6          A7 

A0           

A1           

A2           

A3           



  A0          A1          A2          A3 

A0           

A1           

A2           

A3           



float xi         = pAtomX[i]; 
float yi       = pAtomY[i]; 
float zi       = pAtomZ[i]; 
float xj       = pAtomX[j]; 
float yj       = pAtomY[j]; 
float zj       = pAtomZ[j]; 
int pos        = theadIdx.x & 0x1f; 
int shIdx     = (pos + 1) & 0x1f; 
do  
{ 
    float xij    = xi - xj;  
    float yij    = yi - yj;  
    float zij    = zi - zj;  
    float r2    = xij * xij + yij * yij + zij * zij;   
    float r     = sqrt(r2); 
    . 
    Calculate Forces (lots of Muls and Adds) 
    . 
    xj             = __shfl(xj, shIdx); 
    yj             = __shfl(yj, shIdx); 
    zj             = __shfl(zj, shIdx); 
    pos          = (pos + 1) & 0x1; 
} 
while (pos != ((threadIdx.x + 1) & 0x1f)); 



 GK110: 1,280 threads/SMX, 15 SMXs, 600 warps 

 

 GM204: 1,024 threads/SM, 16 SMs, 512 warps 

 

 GM200: 1,024 threads/SM, 24 SMs, 768 Warps 

 

 

 



 Implies you need about 1,280 (40 * 32) atoms to 
fill the GPU: (40 * 41) / 2 tiles == 820 warps 

 And it’s only going to get worse 

 Not a problem past 10,000 atoms or so 
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// Calculate dot product 
int wid   = threadIdx.x & 0x1f; 
int pos   = wid; 
float dp   = 0; 
while (pos < length) 
{ 
 dp                   += pCustomer[pos] * pItem[pos]; 
 pos                   += 32; 
} 
 
// Reduce results 
dp                    += __shfl(dp, wid ^ 1); 
dp                    += __shfl(dp, wid ^ 2); 
dp                    += __shfl(dp, wid ^ 4); 
dp                    += __shfl(dp, wid ^ 8); 
dp                    += __shfl(dp, wid ^ 16); 
 



// Calculate dot product 
int wid   = threadIdx.x & 0x31; 
int pos   = wid; 
float dp   = 0; 
 
// Unrolled register vs memory sum 
dp                                        += rCustomer0 * pItem[pos]; 
pos                    += 32; 
dp                    += rCustomer1 * pItem[pos]; 
pos                    += 32; 
. 
. 
 
// Reduce results 
dp                     += __shfl(dp, wid ^ 1); 
dp                    += __shfl(dp, wid ^ 2); 
dp                    += __shfl(dp, wid ^ 4); 
dp                    += __shfl(dp, wid ^ 8); 
dp                    += __shfl(dp, wid ^ 16); 
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32-bit floating point has approximately 7 
significant figures 

 

 

 

 

 

 

 
When it happens: PBC, SHAKE, and Force Accumulation in MD, 
backpropagation and recurrence in Neural Networks 

 

  1.4567020 

+0.3046714 

--------------- 

  1.7613730 

 -1.4567020 

-------------- 

  0.3046710 

Lost a sig fig 

  1456702.0000000 

+            0.3046714 

------------------------- 

  1456702.0000000 

 -1456702.0000000 

------------------------- 

               0.0000000 

Lost everything. 





GPU #1    GPU #2 

 

ETot = -288,718.2326  ETot = -288,718.2326 

ETot = -288,718,2325  Etot = -288,718,2326 



GPU #1    GPU #2 

 

ETot = -288,718.2326  ETot = -288,718.2326 

ETot = -288,718,2325  Etot = -288,718,2326 



GPU #1      GPU #2 

 

ETot = -288,456.6774  ETot = -288,458.5931 

ETot = -288,453.8133  Etot = -288,454.1539 

 

GeForce GPUs are not QAed for HPC/ML 



“If your massively 
parallel code isn’t 
deterministic, it’s 
crap.” 



 Acceptable force error is ~10-5 

 Single-precision error is ~10-7 

 So calculate forces in single precision, but 
accumulate in extended precision 

 Before Kepler, we used double-precision 

 GK104 made it necessary to switch to 64-bit 
fixed point 

 But this then allowed us to exploit its fast 
Atomic Adds for accumulation 



 Each iteration of the main kernel in PMEMD uses 9 
double-precision operations 

 Fermi double-precision was ¼ to 1/10th of single-
precision 

 GTX6xx double-precision is 1/24th single precision! 

 So accumulate forces in 64-bit fixed point 

 Fixed point forces are *perfectly* conserved 

 3 double-precision operations per iteration 

 Integer extended math (add with carry) is 32-bit! 



 

 

Floating Point:  A + B + C + D != C + D +A + B 

 

 

 

Fixed Point: A + B + C + D == C + D + A + B 





 On GM2xx, double-precision was further 
reduced to 1/32 that of single-precision whilst 
nearly doubling attainable single-precision 
performance (GM200 versus GK110, GM204 
versus GK104) 

 Initially GM204 is slightly better than GTX 780, 
GM200 ~20% better than GK110 

 Fortunately, we had a solution waiting in the 
wings that we developed for GK1xx 



Extended-Precision Floating-Point Numbers for 
GPU Computation - Andrew Thall, Alma College 

http://andrewthall.org/papers/df64_qf128.pdf 

 

High-Performance Quasi Double-Precison 
Method Using Single-Precision Hardware for 
Molecular Dynamics on GPUs – Tetsuo Narumi  

et al. 

HPC Asia and APAN 2009 

http://andrewthall.org/papers/df64_qf128.pdf
http://andrewthall.org/papers/df64_qf128.pdf


Represented as a float and an int 
 

const int   NARUMI_LARGE_SHIFT           = 21; 

const float NARUMI_LARGE       = (float)(1 << 
(NARUMI_LARGE_SHIFT - 1)); 

 

struct Accumulator { 

    float hs; 

    int   li; 

    Accumulator() : hs(NARUMI_LARGE), li(0) {} 

}; 



void add_narumi(Accumulator& a, float ys) 

{ 

    float hs, ls, ws; 

 

    // Knuth and Dekker addition 

    hs             = a.hs + ys; 

    ws               = hs - a.hs; 

    ls               = ys - ws; 

 

    // Inner Narumi correction 

    a.hs             = hs; 

    a.li                  += (int)(ls * NARUMI_LOWER_FACTOR); 

} 

 



double upcast_narumi(Accumulator& a) 

{ 

    double d        = (double)(a.hs - NARUMI_LARGE); 

    d                   += a.li * NARUMI_LOWER_FACTOR_1_D; 

    return d; 

} 

 



 DPFP 64-bit everything 

 

 

 SPFP 32-bit forces, U64 force summation, 
  64-bit state 

 

 

 SPXP 32-bit forces, Narumi force summation 
  for inner loops, U64 summation, 64-bit 
  state 



DP:   22.855216396810960 

 

DPFP: 22.855216396810960 

 

SPFP: 22.855216396810xxx 
 

SPXP:  22.8552163xxxxxxxx 

 

SP:  22.855xxxxxxxxxxxx 

 







 World’s most lucrative application of the chain 
rule from calculus 

 x is the input data 

 A1 and A2 are linear transformations 

 f1 and f2 are some sort of nonlinear function 

x A1 f1 A2 f2 

y= f2 𝐴2 𝑓1 𝐴1 𝑥  



 Linear:  =x 

 Sigmoid: =
1

1+𝑒−𝑥
 

 Tanh:  =
𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥
 

 Relu:  =max(x, 0) 

 SoftPlus: =log (1+𝑒𝑥) 

 SoftSign: =
1

1+ 𝑥
 

 SoftMax: =
𝑒𝑥𝑖

 𝑒
𝑥𝑖𝑗

𝑗

 



Training: Minimize an Error Function E(y, t) 

 

 

 

L1:   E(y, t) = 𝑦 − 𝑡  

L2:   E(y, t) = 𝑦 − 𝑡 2 

Cross Entropy:  E(y, t) = -t*log(y) –(1-t)*log(1-y) 

 

 

 

 

x A1 f1 A2 f2 
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Neural Network backpropagation faces the twin 
dilemmas of vanishing and exploding gradients 

 

 

Molecular Dynamics force accumulation mostly 
faces exploding gradients 

 

 

But both are dealing with dynamic range issues 





(But I’m wary of its general applicability, it was a disaster for Molecular Dynamics Forces) 



http://benanne.github.io/2015/03/17/plankton.html 

Classifying Plankton With Deep Neural Networks 
 
Sander Dieleman 



 Store weights, hidden units, deltas, etc. as FP16 
and get all the bandwidth acceleration 

 

 For training, do all math in FP32 

 

 All CUDA-capable GPUS support this already 

 

 If it works, do prediction in FP16 on Pascal 



 O(N log N) Annoyingly 
Parallel 

 

 More relevant than 
Generalized Born 

 

 Rate-limited by a 3D FFT 

 

 Approximates long-range 
interactions 









float xi         = pAtomX[i]; 
float yi       = pAtomY[i]; 
float zi       = pAtomZ[i]; 
float xj       = pAtomX[j]; 
float yj       = pAtomY[j]; 
float zj       = pAtomZ[j]; 
int pos        = theadIdx.x & 0x1f; 
int shIdx     = (pos + 1) & 0x1f; 
do  
{ 
    float xij    = xi - xj;  
    float yij    = yi - yj;  
    float zij    = zi - zj;  
    float r2    = xij * xij + yij * yij + zij * zij;  
    if (r2 < cutoff_squared) 
    { 
        float r = sqrt(r2); 
        . 
        Calculate Forces (lots of Muls and Adds) 
        . 
    } 
    xj             = __shfl(xj, shIdx); 
    yj             = __shfl(yj, shIdx); 
    zj             = __shfl(zj, shIdx); 
    pos          = (pos + 1) & 0x1; 
} 
while (pos != ((threadIdx.x + 1) & 0x1f)); 



Spline Interpolate 
charges onto local 
4x4x4 grid 



Forward FFT Convolution Inverse FFT 



Spline Interpolate 
forces from local 
4x4x4 grid 



Fast Convolutional Nets With fbfft: A GPU Performance 
Evaluation - Nicolas Vasilache, Jeff Johnson, Michael Mathieu, 
Soumith Chintala, Serkan Piantino, Yann LeCun 

Fast Training of Convolutional Networks through FFTs -
Michael Mathieu, Mikael Henaff, Yann LeCun 





 Why didn’t I just use SSE/AVX/FPGAs/Xeon 
Phi etc? 

 Without a ground up redesign tailored to each 
platform, it just doesn’t work 

 Don’t believe me?  Go ahead, make my day… 

 Caffe, Theano, Cuda-Convnet are GPU-
resident 

 Why not OpenCL?  Not free on x86, no cuFFT, 
or cuBLAS, and AMD GPU drivers still suck 





1. Use Deep Neural Networks 

 

 

2. ??? 

 

 

3. PROFIT!!!! 



1. Use Deep Neural Networks 

 

 

2. ??? 

 

 

3. SKYNET!!!!* 
 

*https://plus.google.com/101855192190887761500/posts/ETa2wt5J29k 



 Everything we learned building Molecular 
Dynamics code applies to Machine Learning 

 NVIDIA: I love GTX Titan X, but are you done 
crippling FP64 yet? 

 But it’s great for O(N^2) Neural Networks and 
Generalized Born MD 

 SPXP validation coming soon 



AMBER: Ross Walker, Perri Needham, Romelia 
Salomon-Ferrer, Levi Pierce, David Case, Adrian 
Roitberg, Jason Swails, Ben Madej, Grace Liu 

 

Amazon: Rejith George Joseph, Vijai Mohan, 
Srikanth Thirumulai, Avishkar Misra, Leo Dirac, 
Matias Benitez, Nick Wilt 

 

NVIDIA: Mark Berger, Duncan Poole, Simon 
Layton, Jerry Chen, and Sarah Tariq 

 

 


