| CAN'T BELIEVE IT'S NOT
MOLECULAR DYNAMICS

(IT’'S MACHINE LEARNING TOO)
Scott Le Grand

M [N @ M [[[

Outline

Some Things Never Change (GPUs vs the World)
How Best to Exploit GPUs

Molecular Dynamics or Matrix Factorization?
Determinism and Numerical Stability

Dynamic Range for both MD and NNs

Latest AMBER PME Numbers

Conclusions

Brawny versus Wimpy

Brawny cores still beat wimpy cores, most of the time

Urs Holzle
Google

“Slower but energy efficient “wimpy” cores
only win for general workloads if their single-core
speed is reasonably close to that of mid-range
“brawny” cores.”

Insinuation: GPU cores are wimpy

NVIDIA fell for it...

m GeForce GTX Titan X: 3,072 “CORES!”
m GeForce GTX 980: 2,048 “CORES!”

One SIMD Lane == One Core

By this definition, GPUs are really wimpy...

(And a Haswell CPU has up to 144 “cores” making it really, really wimpy, but I digress)

My Definition of “Core”

Core: a set of processing elements that share an L1
cache (or equivalent) and register file

Processor: One or more cores on a single die

(I personally prefer cores with more cache and registers per thread over “brawny” vs “wimpy”)

CPUs are indeed brawny cores

Fast CPU: Intel Xeon E5-2699 v3 Haswell 2.3 GHZ (3.6
GHz Turbo Boost) 45 MB L3 Cache LGA 2011-v3 145W
18-Core Server Processor ($4,632.00 on Amazon)

Peak GFLOPS: ~662
GFLOPS/W: ~4.6
GFLOPS/Core: ~37

GFLOPS/$: ~0.14

But GPUs are brawnier™ cores

Fast GPU: NVIDIA Ge Force GTX Titan X, 24-core,
1088 GHz TDP 250W ($999 announced)

Peak GFLOPS: ~6,695
GFLOPS/W: ~27
GFLOPS/Core: ~280

GFLOPS/ $: ~6.7

GPU Cores were roughly 5-15x
brawnier (2014)...

2014 GPU Core/CPU Core Relative
"Brawniness"

GFLOPS GFLOPS/W BW (GB/s) GFLOPS/S

GPUs have 2x Better GFLOPS/$
(2015)

2015 GPU Core/CPU Core Relative
"Brawniness"

GFLOPS GFLOPS/W GFLOPS/S

So GPUs themselves should be
5-50x brawnier than CPUs or
you’re not doing it right...

Or the algorithm you’re
running is inherently serial®...

*But then why exactly are you running it on 1,000+
machines at once**.

“*Because you're I/O bound? Well then you're
just wasting power using “Brawny” cores, spend
your money on better hard drives and networking.

How about FPGAS?

“FPGAs are (up to) 10x
faster and up to 50x
more power-etficient

than CPUs!!!!”

FPGAS Are Interesting

FPGA: Altera Arria 10 (1150GX)
Peak GFLOPS: 1,366*

GFLOPS/W: 40**

*https:/ /www.altera.com/en_US/pdfs/literature/hb/arria-10/al0_overview.pdf
**http:/ /www.enterprisetech.com/2015/02/23 / microsoft-accelerates-datacenter-with-fpgas/

FPGA Reality

= Maybe 1.5-2x better Perf/W
= 1.37 TFLOPS is something between a GF110

and a GK104

You can only stuff so many of these things in a
server (8 or so0), is power your real constraint?

Nervana is getting ~3.7 TFLOPs (out of ~4.6)
running CNNs on GM204

?

t physical space

IS

Or

1
3
1
13
b
3
1)
¢
L
1
(]
v
g
¥
&
¥
¥
5

du el Sndy e w o ‘

"
13 50w 1111298080
%8 717571 {390EsaEN

Amended FPGA Statement

“2x CPU performance®
with ~1.5x the power-

efficiency ot a GPU”

*~11x better GFLOPS/W than CPUs, which is nice

[=]

(] [[[=

FPGASs versus GPUs

Good News for FPGAs
Altera is adding OpenCL support to FPGAs

Bad News tfor FPGAs (FUD)
Compilation time is hours versus seconds
No FPGA cuFFT, cuBLAS, cuRand, etc libraries
You can buy GPUs on Amazon
Linux/Windows GPU drivers freely available

General GPU Hints

Avoid SandyBridge CPUs!

= They only support PCIE Gen 2 (1/2 PCIE Gen 3)
= They don’t work reliably with GM2xx

[

Avoid GTX 970 (~$200 < GTX 980)
Last 512MB has BW issues
Keep your life simple, time is money

Avoid crazily overclocked GPUs

DIY Digits Dev Box

[=]

[=]

[

Good Choices

Asus P9X79-E WS MB ($500) plus Intel Core-i7
4820 (Ivybridge) CPU ($320)

Asus X99-E WS MB ($520) plus Intel Core-i7
5930K (Haswell) CPU ($560)

1st alternative saves about $260

25 TFLOPs for $7,000! (<50% of Digits DevBox)

For The Data Center

Dell C4130 1U Quad-GPU Server

Full P2P Bisection BW

16)(\

Workaround

\ /

Simplified

- >-
A
\ 4
-< -

Building a Multi-GPU App

Install a recent build of OpenMPI or MPICH?2
(do not install what comes with linux distros)

@ Do not enable GPUDirect
= Do not use MPI 2.x primitives

m Use MPI for process control and

synchronization

Use Interprocess P2P within CUDA to send
messages between the GPUs. I repeat, do not
rely on GPUDirect

Algorithmic Rules of Thumb

= O(N?) Embarrassingly Parallel (Learn CUDA)

@ O(N log N) Annoyingly Parallel (Hire an Expert)

= O(N) Likely I/O-Bound (don’t bother)

Molecular Dynamics

Erur:r'u.'.' = = K‘ Cl - C']S{:H';j_ o :”

1,4 pairs

/
qQ;-q,/ D1y,

. = Y EO—@n)
E Tmpropers Fa I“Q" -9 J =5
fmpr. elecrrostatic =
nonbonded

C. i-k pairs

X

Molecular Dynamics on GPUs

(or how to keep 21,504++ threads occupied)

@ On a CPU, the dominant performance spike is:

for (1 =0; i <N i++)
for j=1+1;]<N;j++)
Calculate fij, fji;

O(N?) Calculation

If we naively ported this to a GPU, it would die the death of a
thousand race conditions and memory overwrites

Solution: Map the problem into many subtasks and reduce the
results

MapReduced Molecular

Dynamics

Force Matrix

j Atoms

o

g3

S =

foR

oy n p— J—

- 4] I

T > S = r=

g g 50 5 =
D) e o

) o o o>

o0 o _ o

28 5 2

o

T B

=N

T 0 EEEE EEEE

L 0 [[][] [[[[]

5 © EEEE EEEN

N o EEEE EEEER

SWOY I

Map each nonredundant tile to a
warp

§EeE

REAE > Warp0

[| [[|

i > Warp!
—> Warp 2

EEE
EEEE > Warpn

Wait, what’s a warp?

m The smallest unit of execution in a GPU
= Up through GM2xx, it’s groups of 32

consecutive threads within the same core that
execute in lockstep

@ GPU cores each run 8-64 warps at once

= May change in the future

“lock-free computing”

What’s So Special About Warps?

__shfl: Exchanges data between warp threads

__ballot: Each bit gives state of a predicate for each
warp thread

__all: True if predicate is true across all warp
threads

any: True if predicate is true on any warp thread

Each iteration produces force
tiles...

Each warp in the GPU cores consumes
them...

Off-Diagonal Tile Calculation in
Detalil

A4 Ab Ab A7
o I
et
= o
S o e

Jn-viagonal fll _ailculation in

Inner Loop

float xi = pAtomX[i];

float yi = pAtomYT[i];

float zi = pAtomZ[i];

float xj = pAtomX[j];

float yj = pAtomY[j];

float zj = pAtomZ[j];

int pos = theadIdx.x & 0x1f;
int shldx = (pos + 1) & 0x1f;
do

{

}

float xij = xi - xj;

floatyij =yi-yj;

float zij = zi- zj;

floatr2 =xij* xij + yij * yij + zij * zij;
floatr = sqrt(r2);

Calculate Forces (lots of Muls and Adds)

Xj = __shfl(xj, shldx);
yj = __ shfl(yj, shldx);
zj = _ shfl(zj, shldx);

pos (pos + 1) & 0x1;

while (pos != ((threadIldx.x + 1) & 0x1f));

How Many Warps?
@ GK110: 1,280 threads/SMX, 15 SMXs, 600 warps
= GM204: 1,024 threads/SM, 16 SMs, 512 warps

m GM200: 1,024 threads/SM, 24 SMs, 768 Warps

= Implies you need about 1,280 (40 * 32) atoms to
fill the GPU: (40 * 41) / 2 tiles == 820 warps

= And it’s only going to get worse
= Not a problem past 10,000 atoms or so

Matrix Factorization

Items

Customers

Latent Factor Matrices

Items

X —

Customers

Innermost Loop

Ajj=Customer; ° Item;

Naive Inner Loop

// Calculate dot product

int wid = threadldx.x & 0x1f;

int pos = wid;

float dp =0;

while (pos < length)

{
dp += pCustomer[pos] * pltem[pos];
pos +=32;

}

// Reduce results
dp +=__ shfl(dp, wid * 1
dp +=__ shfl(dp, wid " 2
dp +=__ shfl(dp, wid " 4);
(
(

7

)
);
).
)

dp +=__ shfl(dp, wid ” 8);
dp +=__ shfl(dp, wid " 16);

Faster Inner Loop

// Calculate dot product

int wid = threadldx.x & 0x31;

int pos = wid;

float dp =(;

// Unrolled register vs memory sum

dp +=rCustomer0 * pltem[pos];
pos +=32;

dp +=rCustomer1 * pltem[pos];
pos +=32;

dp += _ shfl(dp, wid " 1);
dp += _ shfl(dp, wid " 2);
dp += __ shfl(dp, wid " 4);
dp +=__ shfl(dp, wid " 8);
dp +=__ shfl(dp, wid * 16);

Expectation Maximization

Expectation Maximization

T T T T R A
o—1—1———1
o —] 31—
—F——F+—»
e A R A B A
———FH——
*—F 1>

Dynamic Range and Molecular

Dynamics

32-bit floating point has approximately 7
significant figures

1.4567020 1456702.0000000
+0.3046714 + 0.3046714

1.7613730 1456702.0000000
-1.4567020 -1456702.0000000

0.3046710 0.0000000
Lost a sig fig Lost everything.

When it happens: PBC, SHAKE, and Force Accumulation in MD,
backpropagation and recurrence in Neural Networks

Dynamic Range Matters...
Lot...

UBQ - NVE GB dt=0.5fs, no SHAKE

GPU (SPSP)
GPU (SPDP)
GPU (DPDP)

CPU

5
=
=
©
(@)
=,
—
O
—
L

10 15
time [ns]

Reproducible Results Matter...
A Lot...

Can you spot the defective GPU?

GPU #1 GPU #2

ETot =-288,718.2326 ETot =-288,718.2326
ETot =-288,718,2325 Etot =-288,718,2326

Let’s make it easier...

GPU #1 GPU #2

ETot = -288718.2320 ETot = -288 718.2326

ETot = -288718,232D Etot =-2887182326

Non-Deterministic Single-

Precision
GPU #1 GPU #2
ETot = -288,456.6774 ETot = -288,458.5931
ETot = -288,453.8133 Etot = -288454.1539

GeForce GPUs are not QAed for HPC/ML

Hear Me Now, Believe Me Later

“If your massively
parallel code isn't
deterministic, it’'s
crap.”

Deterministic Stable MD
(using single-precision)

= Acceptable force error is ~10-

= Single-precision error is ~10~

= So calculate forces in single precision, but

accumulate in extended precision

= Before Kepler, we used double-precision
= GK104 made it necessary to switch to 64-bit

fixed point
But this then allowed us to exploit its fast
Atomic Adds for accumulation

M & &N M [

Use 64-bit fixed point for
accumulation

Each iteration of the main kernel in PMEMD uses 9
double-precision operations

Fermi double-precision was %4 to 1/10t of single-
precision

GTX6xx double-precision is 1/24t% single precision!
So accumulate forces in 64-bit fixed point

Fixed point forces are *perfectly* conserved

3 double-precision operations per iteration

Integer extended math (add with carry) is 32-bit!

Associativity

Floating Point: A+B+C+D!=C+D+A+8B

Fixed Point: A+B+C+D==C+D+A+B

Generalized Born Performance

W Nucleosome GB

® Myoglobin GB

GTX Titan X GTX Titan Black 2XE5-2660 (16 cores)

Along Came GM2xx

= On GM2xx, double-precision was further
reduced to 1/32 that of single-precision whilst
nearly doubling attainable single-precision
performance (GM200 versus GK110, GM204
versus GK104)

= Initially GM204 is slightly better than GTX 780,
GM200 ~20% better than GK110

= Fortunately, we had a solution waiting in the
wings that we developed for GK1xx

Use 2 x 32 bits (~48-bit FP)

Extended-Precision Floating-Point Numbers for
GPU Computation - Andrew Thall, Alma College

High-Performance Quasi Double-Precison
Method Using Single-Precision Hardware for
Molecular Dynamics on GPUs - Tetsuo Narumi

et al.
HPC Asia and APAN 2009

http://andrewthall.org/papers/df64_qf128.pdf
http://andrewthall.org/papers/df64_qf128.pdf

Narumi Summation

Represented as a float and an int

const int NARUMI LARGE_SHIFT = 21;

const float NARUMI_LARGE = (float)(1 <<
(NARUMI_LARGE_SHIFT - 1));

struct Accumulator {

float hs;

int i

Accumulator() : hs(NARUMI_LARGE)), 1i(0) {}
b

Addition

void add_narumi(Accumulator& a, float ys)

{

float hs, 1s, ws;

// Knuth and Dekker addition

hs =a.hs +ys;
WS = hs - a.hs;
Is =ys - ws;

// Inner Narumi correction
a.hs = hs;
a.li += (int)(Is * NARUMI_LOWER_FACTOR);

Conversion to double

double upcast_narumi(Accumulator& a)

{
double d = (double)(a.hs - NARUMI_LARGE);
d +=a.li* NARUMI_LOWER_FACTOR_1_D;
return d;

}

Something for Everyone

= DPFP 64-bit everything

= SPFP 32-bit forces, U64 force summation,
64-bit state

m SPXP 32-bit forces, Narumi force summation
for inner loops, U64 summation, 64-bit
state

DP:

DPFEP:

SPEFP:

SPXP:

SP:

Side by Side
22.855216396810960

22.855216396810960

22.855216396810xxx

22.8552T 63X XXXXXXX

22 . 855X XXXXXXXXXXX

R ————————————————————
UBQ - NVE GB dt=0.5fs, no SHAKE

-1385

T
GPU (SPSP)
GPU (SPDP)
GPU (DPDP)
CPU

-1390

ETOT [kcal/mol]

0 S 10 15 20 25
time [ns]

If All Goes Well...

B Nucleosome GB

B Myoglobin GB

GTX Titan X GTX Titan X GTX Titan 2xE5-2660 (16
SPXP SPFP Black cores)

Neural Networks

World’s most lucrative application of the chain
rule from calculus

x is the input data
A1l and A2 are linear transformations
f1 and 2 are some sort of nonlinear function

X Al f1 A2 2

y= f2(A2 (f1(A1(x))))

Nonlinear functions

Linear: =X
: : 1
Sigmoid: e
Tanh: =ex+e_x
et—e
Relu: =max(x, 0)
SoftPlus: =log(1+e?)
: 1
SoftSign: i
SoftMax: et

Neural Network Training

Training: Minimize an Error Function E(y, t)

o o -0 o0
X Al f1 A2 2
L1: E(y, t) = [y — t|
L2: E(y, t) = (y — t)*

Cross Entropy: E(y, t) = -t*log(y) -(1-t)*log(1-y)

Neural Network Derivatives
(BackPropagation)

X Al f1 A2 2

@E @E @f2 @A2 @f1 @Al
@x @f2 @A2 @f1 @A1 @x
@E @E @f2 @A2

@A2ij @f2 @A2 @A2;;

@E _ @E @f2 @A2 @f1 @Al
@Aljj @f2 @A2 @f1 @A1l @AL;

A Bunch of Muls and Adds

Neural Network backpropagation faces the twin
dilemmas of vanishing and exploding gradients

Molecular Dynamics force accumulation mostly
faces exploding gradients

But both are dealing with dynamic range issues

16-bit Floating
Point only has 3
significant
figures...

Image Data

Only Has 2

Significant
Figures

But I'm wary of its general applicability, it was a disaster for Molecular Dynamics Forces

The Answer Isn’t Always AlexNet

Classifying Plankton With Deep Neural Networks

Sander Dieleman

http:/ /benanne.github.io/2015/03/17 / plankton.html

[=]

Middle Ground

Store weights, hidden units, deltas, etc. as FP16
and get all the bandwidth acceleration

For training, do all math in FP32

All CUDA-capable GPUS support this already

If it works, do prediction in FP16 on Pascal

Nonbond Cutoff plus Skin

Bounding Boxes

Inner Loop

float xi = pAtomX[i];
float yi = pAtomY[i];
float zi = pAtomZ[i];
float xj = pAtomX[j];
float yj = pAtomYf[j];
float zj = pAtomZ[j];
int pos = theadldx.x & Ox1f;
int shldx = (pos + 1) & 0x1f;
do
{

floatxij — =xi-xj;

floatyij =yi-yj;

floatzij =zi-zj;

}

floatr2 =xij * xij + yij * yij + zij * zij;
if (r2 < cutoff_squared)

{
floatr = sqrt(r2);

Calculate Forces (lots of Muls and Adds)

}

Xj = __shfl(xj, shldx);
N = __shfl(yj, shldx);
Zj = __shfl(zj, shldx);
pos = (pos + 1) & 0x1;

while (pos != ((threadIdx.x + 1) & 0x1f));

Reciprocal Forces

Spline Interpolate

charges onto local
4x4x4 grid

Convolution

>- >-

Reciprocal Forces

Spline Interpolate

forces from local
4x4x4 grid

Not entirely unlike CNNs

Fast Training of Convolutional Networks through FFTs -
Michael Mathieu, Mikael Henaff, Yann LeCun

Fast Convolutional Nets With fbfft: A GPU Performance
Evaluation - Nicolas Vasilache, Jeff Johnson, Michael Mathieu,
Soumith Chintala, Serkan Piantino, Yann LeCun

Performance (AMBER 14)

GTX Titan X AMBER 14 Performance

B GTX Titan X SPXP
B GTX Titan X SPFP

B GTX Titan Black

W 2xE5-2660 (16 cores)

Should You Learn CUDA?

Why didn’t I just use SSE/ AVX/FPGAs/Xeon
Phi etc?

Without a ground up redesign tailored to each
platform, it just doesn’t work

= Don’t believe me? Go ahead, make my day...
= Caffe, Theano, Cuda-Convnet are GPU-

resident

Why not OpenCL? Not free on x86, no cuFFT,
or cuBLAS, and AMD GPU drivers still suck

AMBER Performance

JAC NVE Performance

/I

I I
2012 2014

Two Worst Cases

1. Use Deep Neural Networks

2. 277

3. PROFIT!!!

Two Worst Cases

1. Use Deep Neural Networks

2. 277

3. SKYNET!!!*

*https:/ / plus.google.com/101855192190887761500/ posts/ ETa2wt5]29k

Summary

Everything we learned building Molecular
Dynamics code applies to Machine Learning

NVIDIA: I'love GTX Titan X, but are you done
crippling FP64 yet?

But it’s great for O(N”2) Neural Networks and
Generalized Born MD

SPXP validation coming soon

Acknowledgments

AMBER: Ross Walker, Perri Needham, Romelia
Salomon-Ferrer, Levi Pierce, David Case, Adrian
Roitberg, Jason Swails, Ben Madej, Grace Liu

Amazon: Rejith George Joseph, Vijai Mohan,
Srikanth Thirumulai, Avishkar Misra, Leo Dirac,
Matias Benitez, Nick Wilt

NVIDIA: Mark Berger, Duncan Poole, Simon
Layton, Jerry Chen, and Sarah Tariq

