
Scott Le Grand

 Some Things Never Change (GPUs vs the World)

 How Best to Exploit GPUs

 Molecular Dynamics or Matrix Factorization?

 Determinism and Numerical Stability

 Dynamic Range for both MD and NNs

 Latest AMBER PME Numbers

 Conclusions

 Brawny cores still beat wimpy cores, most of the time

 Urs Hölzle
 Google

 “Slower but energy efficient “wimpy” cores
only win for general workloads if their single-core
speed is reasonably close to that of mid-range
“brawny” cores.”

 GeForce GTX Titan X: 3,072 “CORES!”

 GeForce GTX 980: 2,048 “CORES!”

One SIMD Lane == One Core

By this definition, GPUs are really wimpy…

(And a Haswell CPU has up to 144 “cores” making it really, really wimpy, but I digress)

Core: a set of processing elements that share an L1
cache (or equivalent) and register file

Processor: One or more cores on a single die

(I personally prefer cores with more cache and registers per thread over “brawny” vs “wimpy”)

Fast CPU: Intel Xeon E5-2699 v3 Haswell 2.3 GHZ (3.6
GHz Turbo Boost) 45 MB L3 Cache LGA 2011-v3 145W
18-Core Server Processor ($4,632.00 on Amazon)

Peak GFLOPS: ~662

GFLOPS/W: ~4.6

GFLOPS/Core: ~37

GFLOPS/$: ~0.14

Fast GPU: NVIDIA Ge Force GTX Titan X, 24-core,
1088 GHz TDP 250W ($999 announced)

Peak GFLOPS: ~6,695

GFLOPS/W: ~27

GFLOPS/Core: ~280

GFLOPS/$: ~6.7

*But then why exactly are you running it on 1,000+
machines at once**.

**Because you’re I/O bound? Well then you’re
just wasting power using “Brawny” cores, spend
your money on better hard drives and networking.

“FPGAs are (up to) 10x
faster and up to 50x
more power-efficient
than CPUs!!!!”

FPGA: Altera Arria 10 (1150GX)

Peak GFLOPS: 1,366*

GFLOPS/W: 40**

*https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf

**http://www.enterprisetech.com/2015/02/23/microsoft-accelerates-datacenter-with-fpgas/

 Maybe 1.5-2x better Perf/W

 1.37 TFLOPS is something between a GF110
and a GK104

 You can only stuff so many of these things in a
server (8 or so), is power your real constraint?

 Nervana is getting ~3.7 TFLOPs (out of ~4.6)
running CNNs on GM204

“2x CPU performance*
with ~1.5x the power-
efficiency of a GPU”

*~11x better GFLOPS/W than CPUs, which is nice

Good News for FPGAs

 Altera is adding OpenCL support to FPGAs

Bad News for FPGAs (FUD)

 Compilation time is hours versus seconds

 No FPGA cuFFT, cuBLAS, cuRand, etc libraries

 You can buy GPUs on Amazon

 Linux/Windows GPU drivers freely available

 Avoid SandyBridge CPUs!

 They only support PCIE Gen 2 (1/2 PCIE Gen 3)

 They don’t work reliably with GM2xx

 Avoid GTX 970 (~$200 < GTX 980)

 Last 512MB has BW issues

 Keep your life simple, time is money

 Avoid crazily overclocked GPUs

CPU

8747 PCIE Switch 8747 PCIE Switch

GPU 0 GPU 1 GPU 2 GPU 3

16x 16x 16x 16x

16x 16x

 Asus P9X79-E WS MB ($500) plus Intel Core-i7
4820 (Ivybridge) CPU ($320)

 Asus X99-E WS MB ($520) plus Intel Core-i7
5930K (Haswell) CPU ($560)

 1st alternative saves about $260

 25 TFLOPs for $7,000! (<50% of Digits DevBox)

Dell C4130 1U Quad-GPU Server

CPU

8796 PCIE Switch

GPU 0 GPU 1 GPU 2 GPU 3

16x 16x 16x 16x

16x

16x
IB

CPU

8747 PCIE Switch 8747 PCIE Switch

GPU 0 GPU 1 GPU 2 GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

 Install a recent build of OpenMPI or MPICH2
(do not install what comes with linux distros)

 Do not enable GPUDirect

 Do not use MPI 2.x primitives

 Use MPI for process control and
synchronization

 Use Interprocess P2P within CUDA to send
messages between the GPUs. I repeat, do not
rely on GPUDirect

 O(N2) Embarrassingly Parallel (Learn CUDA)

 O(N log N) Annoyingly Parallel (Hire an Expert)

 O(N) Likely I/O-Bound (don’t bother)

 On a CPU, the dominant performance spike is:

O(N2) Calculation

If we naively ported this to a GPU, it would die the death of a
thousand race conditions and memory overwrites

Solution: Map the problem into many subtasks and reduce the
results

for (i =0; i < N; i++)
 for (j = i + 1; j < N; j++)
 Calculate fij, fji;

Subdivide force matrix into 3
classes of independent tiles

Off-diagonal

On-diagonal

Redundant

Force Matrix

j Atoms

i
A

to
m

s

Warp 0

Warp 1

Warp 2

Warp n

.

.

.

.

.

.

 The smallest unit of execution in a GPU

 Up through GM2xx, it’s groups of 32
consecutive threads within the same core that
execute in lockstep

 GPU cores each run 8-64 warps at once

 May change in the future

 “lock-free computing”

__shfl: Exchanges data between warp threads

__ballot: Each bit gives state of a predicate for each
 warp thread

__all: True if predicate is true across all warp
 threads

_any: True if predicate is true on any warp thread

Warp 0

Warp 1

Warp 2

Warp n

Warp 0

Warp 1

Warp 2

Warp n

Warp 0

Warp 1

Warp 2

Warp n

Warp 0

Warp 1

Warp 2

Warp n

. . .

SM 0 SM 1 SM m SM 2

Each warp in the GPU cores consumes

them…

 A4 A5 A6 A7

A0

A1

A2

A3

 A0 A1 A2 A3

A0

A1

A2

A3

float xi = pAtomX[i];
float yi = pAtomY[i];
float zi = pAtomZ[i];
float xj = pAtomX[j];
float yj = pAtomY[j];
float zj = pAtomZ[j];
int pos = theadIdx.x & 0x1f;
int shIdx = (pos + 1) & 0x1f;
do
{
 float xij = xi - xj;
 float yij = yi - yj;
 float zij = zi - zj;
 float r2 = xij * xij + yij * yij + zij * zij;
 float r = sqrt(r2);
 .
 Calculate Forces (lots of Muls and Adds)
 .
 xj = __shfl(xj, shIdx);
 yj = __shfl(yj, shIdx);
 zj = __shfl(zj, shIdx);
 pos = (pos + 1) & 0x1;
}
while (pos != ((threadIdx.x + 1) & 0x1f));

 GK110: 1,280 threads/SMX, 15 SMXs, 600 warps

 GM204: 1,024 threads/SM, 16 SMs, 512 warps

 GM200: 1,024 threads/SM, 24 SMs, 768 Warps

 Implies you need about 1,280 (40 * 32) atoms to
fill the GPU: (40 * 41) / 2 tiles == 820 warps

 And it’s only going to get worse

 Not a problem past 10,000 atoms or so

? ? 1 ? ? ? 1 ?

? ? ? 1 ? ? ? ?

? 1 1 ? ? ? 1 1

? 1 ? 1 ? ? ? ?

? ? 1 ? ? 1 ? ?

1 ? ? ? ? 1 ? ?

? ? ? 1 ? ? ? 1

1 ? 1 ? ? ? 1 ?

Items

C
u

st
o

m
er

s

X

Items

C
u

st
o

m
er

s

 𝐴𝑖𝑗=𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑖 ° 𝐼𝑡𝑒𝑚𝑗

// Calculate dot product
int wid = threadIdx.x & 0x1f;
int pos = wid;
float dp = 0;
while (pos < length)
{
 dp += pCustomer[pos] * pItem[pos];
 pos += 32;
}

// Reduce results
dp += __shfl(dp, wid ^ 1);
dp += __shfl(dp, wid ^ 2);
dp += __shfl(dp, wid ^ 4);
dp += __shfl(dp, wid ^ 8);
dp += __shfl(dp, wid ^ 16);

// Calculate dot product
int wid = threadIdx.x & 0x31;
int pos = wid;
float dp = 0;

// Unrolled register vs memory sum
dp += rCustomer0 * pItem[pos];
pos += 32;
dp += rCustomer1 * pItem[pos];
pos += 32;
.
.

// Reduce results
dp += __shfl(dp, wid ^ 1);
dp += __shfl(dp, wid ^ 2);
dp += __shfl(dp, wid ^ 4);
dp += __shfl(dp, wid ^ 8);
dp += __shfl(dp, wid ^ 16);

1

1

1 1 1 1

1 1

1 1

1 1

1 1

1 1 1

1

1

1 1 1 1

1 1

1 1

1 1

1 1

1 1 1

1

1

1 1 1 1

1 1

1 1

1 1

1 1

1 1 1

32-bit floating point has approximately 7
significant figures

When it happens: PBC, SHAKE, and Force Accumulation in MD,
backpropagation and recurrence in Neural Networks

 1.4567020

+0.3046714

 1.7613730

 -1.4567020

 0.3046710

Lost a sig fig

 1456702.0000000

+ 0.3046714

 1456702.0000000

 -1456702.0000000

 0.0000000

Lost everything.

GPU #1 GPU #2

ETot = -288,718.2326 ETot = -288,718.2326

ETot = -288,718,2325 Etot = -288,718,2326

GPU #1 GPU #2

ETot = -288,718.2326 ETot = -288,718.2326

ETot = -288,718,2325 Etot = -288,718,2326

GPU #1 GPU #2

ETot = -288,456.6774 ETot = -288,458.5931

ETot = -288,453.8133 Etot = -288,454.1539

GeForce GPUs are not QAed for HPC/ML

“If your massively
parallel code isn’t
deterministic, it’s
crap.”

 Acceptable force error is ~10-5

 Single-precision error is ~10-7

 So calculate forces in single precision, but
accumulate in extended precision

 Before Kepler, we used double-precision

 GK104 made it necessary to switch to 64-bit
fixed point

 But this then allowed us to exploit its fast
Atomic Adds for accumulation

 Each iteration of the main kernel in PMEMD uses 9
double-precision operations

 Fermi double-precision was ¼ to 1/10th of single-
precision

 GTX6xx double-precision is 1/24th single precision!

 So accumulate forces in 64-bit fixed point

 Fixed point forces are *perfectly* conserved

 3 double-precision operations per iteration

 Integer extended math (add with carry) is 32-bit!

Floating Point: A + B + C + D != C + D +A + B

Fixed Point: A + B + C + D == C + D + A + B

 On GM2xx, double-precision was further
reduced to 1/32 that of single-precision whilst
nearly doubling attainable single-precision
performance (GM200 versus GK110, GM204
versus GK104)

 Initially GM204 is slightly better than GTX 780,
GM200 ~20% better than GK110

 Fortunately, we had a solution waiting in the
wings that we developed for GK1xx

Extended-Precision Floating-Point Numbers for
GPU Computation - Andrew Thall, Alma College

http://andrewthall.org/papers/df64_qf128.pdf

High-Performance Quasi Double-Precison
Method Using Single-Precision Hardware for
Molecular Dynamics on GPUs – Tetsuo Narumi

et al.

HPC Asia and APAN 2009

http://andrewthall.org/papers/df64_qf128.pdf
http://andrewthall.org/papers/df64_qf128.pdf

Represented as a float and an int

const int NARUMI_LARGE_SHIFT = 21;

const float NARUMI_LARGE = (float)(1 <<
(NARUMI_LARGE_SHIFT - 1));

struct Accumulator {

 float hs;

 int li;

 Accumulator() : hs(NARUMI_LARGE), li(0) {}

};

void add_narumi(Accumulator& a, float ys)

{

 float hs, ls, ws;

 // Knuth and Dekker addition

 hs = a.hs + ys;

 ws = hs - a.hs;

 ls = ys - ws;

 // Inner Narumi correction

 a.hs = hs;

 a.li += (int)(ls * NARUMI_LOWER_FACTOR);

}

double upcast_narumi(Accumulator& a)

{

 double d = (double)(a.hs - NARUMI_LARGE);

 d += a.li * NARUMI_LOWER_FACTOR_1_D;

 return d;

}

 DPFP 64-bit everything

 SPFP 32-bit forces, U64 force summation,
 64-bit state

 SPXP 32-bit forces, Narumi force summation
 for inner loops, U64 summation, 64-bit
 state

DP: 22.855216396810960

DPFP: 22.855216396810960

SPFP: 22.855216396810xxx

SPXP: 22.8552163xxxxxxxx

SP: 22.855xxxxxxxxxxxx

 World’s most lucrative application of the chain
rule from calculus

 x is the input data

 A1 and A2 are linear transformations

 f1 and f2 are some sort of nonlinear function

x A1 f1 A2 f2

y= f2 𝐴2 𝑓1 𝐴1 𝑥

 Linear: =x

 Sigmoid: =
1

1+𝑒−𝑥

 Tanh: =
𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥

 Relu: =max(x, 0)

 SoftPlus: =log (1+𝑒𝑥)

 SoftSign: =
1

1+ 𝑥

 SoftMax: =
𝑒𝑥𝑖

 𝑒
𝑥𝑖𝑗

𝑗

Training: Minimize an Error Function E(y, t)

L1: E(y, t) = 𝑦 − 𝑡

L2: E(y, t) = 𝑦 − 𝑡 2

Cross Entropy: E(y, t) = -t*log(y) –(1-t)*log(1-y)

x A1 f1 A2 f2

@𝐸

@𝑥
=

@𝐸

@𝑓2

@𝑓2

@𝐴2

@𝐴2

@𝑓1

@𝑓1

@𝐴1

@𝐴1

@𝑥

@𝐸

@𝐴2𝑖𝑗
=

@𝐸

@𝑓2

@𝑓2

@𝐴2

@𝐴2

@𝐴2𝑖𝑗

@𝐸

@𝐴1𝑖𝑗
=

@𝐸

@𝑓2

@𝑓2

@𝐴2

@𝐴2

@𝑓1

@𝑓1

@𝐴1

@𝐴1

@𝐴1𝑖𝑗

x A1 f1 A2 f2

Neural Network backpropagation faces the twin
dilemmas of vanishing and exploding gradients

Molecular Dynamics force accumulation mostly
faces exploding gradients

But both are dealing with dynamic range issues

(But I’m wary of its general applicability, it was a disaster for Molecular Dynamics Forces)

http://benanne.github.io/2015/03/17/plankton.html

Classifying Plankton With Deep Neural Networks

Sander Dieleman

 Store weights, hidden units, deltas, etc. as FP16
and get all the bandwidth acceleration

 For training, do all math in FP32

 All CUDA-capable GPUS support this already

 If it works, do prediction in FP16 on Pascal

 O(N log N) Annoyingly
Parallel

 More relevant than
Generalized Born

 Rate-limited by a 3D FFT

 Approximates long-range
interactions

float xi = pAtomX[i];
float yi = pAtomY[i];
float zi = pAtomZ[i];
float xj = pAtomX[j];
float yj = pAtomY[j];
float zj = pAtomZ[j];
int pos = theadIdx.x & 0x1f;
int shIdx = (pos + 1) & 0x1f;
do
{
 float xij = xi - xj;
 float yij = yi - yj;
 float zij = zi - zj;
 float r2 = xij * xij + yij * yij + zij * zij;
 if (r2 < cutoff_squared)
 {
 float r = sqrt(r2);
 .
 Calculate Forces (lots of Muls and Adds)
 .
 }
 xj = __shfl(xj, shIdx);
 yj = __shfl(yj, shIdx);
 zj = __shfl(zj, shIdx);
 pos = (pos + 1) & 0x1;
}
while (pos != ((threadIdx.x + 1) & 0x1f));

Spline Interpolate
charges onto local
4x4x4 grid

Forward FFT Convolution Inverse FFT

Spline Interpolate
forces from local
4x4x4 grid

Fast Convolutional Nets With fbfft: A GPU Performance
Evaluation - Nicolas Vasilache, Jeff Johnson, Michael Mathieu,
Soumith Chintala, Serkan Piantino, Yann LeCun

Fast Training of Convolutional Networks through FFTs -
Michael Mathieu, Mikael Henaff, Yann LeCun

 Why didn’t I just use SSE/AVX/FPGAs/Xeon
Phi etc?

 Without a ground up redesign tailored to each
platform, it just doesn’t work

 Don’t believe me? Go ahead, make my day…

 Caffe, Theano, Cuda-Convnet are GPU-
resident

 Why not OpenCL? Not free on x86, no cuFFT,
or cuBLAS, and AMD GPU drivers still suck

1. Use Deep Neural Networks

2. ???

3. PROFIT!!!!

1. Use Deep Neural Networks

2. ???

3. SKYNET!!!!*

*https://plus.google.com/101855192190887761500/posts/ETa2wt5J29k

 Everything we learned building Molecular
Dynamics code applies to Machine Learning

 NVIDIA: I love GTX Titan X, but are you done
crippling FP64 yet?

 But it’s great for O(N^2) Neural Networks and
Generalized Born MD

 SPXP validation coming soon

AMBER: Ross Walker, Perri Needham, Romelia
Salomon-Ferrer, Levi Pierce, David Case, Adrian
Roitberg, Jason Swails, Ben Madej, Grace Liu

Amazon: Rejith George Joseph, Vijai Mohan,
Srikanth Thirumulai, Avishkar Misra, Leo Dirac,
Matias Benitez, Nick Wilt

NVIDIA: Mark Berger, Duncan Poole, Simon
Layton, Jerry Chen, and Sarah Tariq

