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Homeland Security

Constraints of the
Input data:

6 Noise

¢ Hundreds of
frames per objects
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Homeland Security

¢ One key application for Homeland Security is the need to
perform high quality luggage inspection at airports

¢ This task becomes challenging since it involves the
following constraints :

Near real-time response needed
Very high accuracy needed

¢ We will explore using CUDA 6.5 and new hardware
features to address these needs in this important
application

March 17-20, GTC 2015
San Jose, California



Outline for this presentation
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Homeland Security
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Object Detection Pipeline
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Homeland Security

Image Segmentation plays a key role in the
compute pipeline when performing object

detection.

Multiple algorithms:
Graph-based image segmentation [Fenzenswalb04]

Level Set [Shi05]
Spectral Clustering [Zelnik-Manor04]
Connected Component Labeling [Zhao10]
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Outline for this presentation

Connected Component Analysis
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Connected Component

Labeling

6 Connecteo
based on t

6 Connectec

component labeling is a good fit
ne constraints of the environment

Component Labeling identifies

neighboring segments possessing similar

Intensities

Potential for efficient segmentation
Provides high quality results
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Connected Component

Labeling

\v

A lot of dependencies .
¢ among neighbors!!!
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Outline for this presentation

NVIDIA's Hyper-Q
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How can we improve the

performance of CCL?

¢ Exploit inherent parallelism!

¢ Dependencies among neighbors?
Stripe-based Connected Component Labeling [Zhao10]
Re-structure of the storage labeling

¢ Merge Strip-based approach?
Exploit CUDA’'s Dynamic Parallelism

¢ Further optimizations
Explore the potential of using Hyper-Q
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Accelerated Connected

¢ Two phases:

Component Labeling

Phase 0: Find Spans
Phase 1. Merge Spans
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Phase 0: FInd Spans

Each span has two elements: (V<. Yong)

Span = {()/Sm”f’ yend) | (x, ystart) (X, Vstart+1) e ](x'yend)}

A unique label is assigned immediately
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Dynamic Parallelism

s+ Kepler GK110 [Whitepaper NVIDIA’s Next Generation CUDATM
Compute Architecture: KeplerTM GK110]

Nested parallelism
Dynamic Parallelism
GPU Adapts to Data, Dynamically Launches New Threads

Fermi GPU Kepler GPU
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Phase 1: Merge Spans

Merge Span
Parent Kernel Label Label
/" Spans matrix ~ matrix
112 1(2
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One single update

Next span

18 March 17-20, GTC 2015
San Jose, California



Outline for this presentation

¢ NVIDIA's Hyper-Q
¢ Performance results

¢ Conclusion and future work
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¢ Kepler: Hyper- Q worklng W|th CUDA streams [Whitepaper
NVIDIA’s Next Generation CUDATM Compute Architecture: KeplerTM GK110]

Fermi Model Kepler Hyper-Q Model
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When should we use Hyper-Q?

¢ Identify kernels that have low of the device

¢ Identify applications that can allow for concurrent kernel
execution

¢ Two tasks:
Analyze the applications
Analyze the kernels
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Accelerated Connected

Component Labeling

¢ Resources utilization per kernel

Find Spans:

¢ SMX Activity: 27%
¢ Occupancy: 0.11
Merge Spans

¢ SMX Activity: 31%
¢ Occupancy: 0.09
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Accelerated Connected

Component Labeling

¢ Exploiting Hyper-Q

" Stream 1 “Each stream processes

—Q_ — 2 frames - each frame has

\ ) 1512 x 512 pixels

" Stream 2 " Each stream processes

Hyper-Q — —Q_ ~ 2 frames - each frame has

L ) 1L512 x 512 pixels

Stream N Each stream processes
_ _ -|:2 frames - each frame has
= 512 x 512 pixels
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Concurrent kernel execution
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Performance Results

¢ Speedup of a stream-based ACCL run on CUDA 6.5 vs.
OpenMP with 8 threads on an Intel Core i7-3770K

# Streams | # Frames | OpenMP CCL (s) | ACCL(s) | Speedup

4 8 2.72 1.35 2.01x
8 16 10.79 2.73 3.94x
16 32 42.92 5.43 7.91x
32 64 171.18 10.79 15.32X

64 128 1020.00 21.56 47.32X
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Conclusion

Improved performance of image segmentation task for
baggage scanning problem

Exploited NVIDIA's Hyper-Q feature to accelerate Connected
Component Labeling

Compared an OpenMP CCL implementation with our ACCL
Implementation

Our algorithm scales well as long as we increase the number of
streams

Kernels with low occupancy are the best fit to use Hyper-Q
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Future work

¢ Combine Hyper-Q with MPI to exploit multiple grains of
parallelism using multiple GPU nodes

¢ Evaluate additional image segmentation algorithms that
address the constraints of baggage scanning
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