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The codes !
• Exnihilo: radiation 

transport framework

– Multi-application (fusion, 

fission, detectors, 
homeland security)


–  Export controlled


• Profugus mini-app:

– Written for algorithmic 

and HPC development

–  Limited capability

–  Reduced complexity
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Introduction to the code environment!
• C++11: unordered maps, auto, lambdas, etc.

• TPLs: Trilinos, HDF5

• Data structures are not POD, have irregular shape


– Many distinct objects, dynamically sized vectors, shared 
pointers, etc. trade convenience for poorer data locality


–  Examples: particle, geometry cell, material attributes


• Production environment: Chester (OLCF cluster)

–  PGI 14.7.0 (a few months old)

–  CUDA 5.5 (more than 2 years old)


Materials

Material


Cross section data


Geometry


Assy 1
 Assy 2
 Assy 3


...
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Introduction to Monte Carlo for neutronics!

YES

particle born

calculate distance to collision

calculate distance to boundary

distance = collision

process surfaceparticle escapes

process collision particle killed

NO

YES

NO

YES

NO



5 C++ Monte Carlo OpenACC 

Algorithmic challenges!
•  Inherently stochastic process


–  Fast, long-period random number sampling required

–  Highly divergent code paths between loops

–  There is no fixed-length nested “for loop” to parallelize


• Complex data structures built to mirror physical 
processes

–  Indirection, dynamic allocation, irregular data shapes

–  There is no homogeneous multi-dimensional array of data
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Initial timing profile!

• Ran a semi-realistic reactor assembly problem

• No compute-intensive bottlenecks to offload


mc::Manager::solve
18.19%
(0.00%)
1×

profugus::KCode_Solver::solve
18.19%
(0.00%)
1×

18.19%
1×

profugus::KCode_Solver::initialize
1.11%
(0.00%)
1×

1.11%
1×

profugus::Source_Transporter::solve
16.19%
(0.00%)
2×

16.19%
2×

profugus::Fission_Source::build_source
0.74%
(0.00%)
2×

0.74%
2×

profugus::Tallier::build
0.74%
(0.74%)
2×

0.74%
2×

profugus::Domain_Transporter::transport
13.77%
(0.63%)
204148×

13.77%
204148×

profugus::Fission_Source::get_particle
2.34%
(0.06%)
204148×

2.34%
204148×

profugus::Source::make_RNG
1.11%
(0.00%)
3×

0.74%
2×

profugus::Geometry::move_to_point
0.76%
(0.06%)
8759551×

0.76%
8759551×

profugus::Geometry::distance_to_boundary
3.22%
(0.05%)

24437238×

3.22%
24437238×

profugus::Physics::collide
2.94%
(1.76%)
8759551×

2.94%
8759551×

profugus::Geometry::move_to_surface
2.15%
(0.06%)

15677687×

2.15%
15677687×

profugus::Physics::total
1.79%
(1.79%)

48874476×

0.89%
24437238×

profugus::Physics::sample_fission_site
1.38%
(1.34%)
8759551×

1.38%
8759551×

profugus::Tallier::path_length
1.33%
(0.39%)

24437238×

1.33%
24437238×

profugus::Geometry::initialize
1.74%
(0.45%)
740264×

1.74%
740264×

profugus::RTK_Array::update_state
0.69%
(0.66%)
8759551×

0.69%
8759551×

profugus::RTK_Array::distance_to_boundary
3.17%
(0.73%)

24437238×

3.17%
24437238×

profugus::Physics::sample_group
0.88%
(0.88%)
8759551×

0.88%
8759551×

profugus::RTK_Array::cross_surface
2.09%
(0.17%)

15677687×

2.09%
15677687×

profugus::Keff_Tally::accumulate
0.94%
(0.05%)

24437238×

0.94%
24437238×

profugus::RTK_Array::transform
0.99%
(0.99%)

32079032×

0.75%
24437238×

profugus::RTK_Cell::distance_to_boundary
1.70%
(1.56%)

24437238×

1.70%
24437238×

profugus::RTK_Array::initialize
1.29%
(0.96%)
740264×

1.29%
740264×

profugus::RTK_Array::determine_boundary_crossings
0.97%
(0.39%)

15677687×

0.97%
15677687×

profugus::RTK_Array::update_coordinates
0.95%
(0.52%)
6901530×

0.95%
6901530×

profugus::RTK_Array::determine_boundary_crossings
0.59%
(0.59%)

15677687×

0.59%
15677687×

init_rng
1.48%
(0.00%)
4×

initialize
1.33%
(1.17%)
4×

1.33%
4×

0.89%
24437238×

profugus::RNG_Control::rng
1.11%
(0.00%)
3×

1.11%
3×

1.11%
3×

Particle transport loop


Eight routines 
each take


5–20% of time
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The initial plan!
• Rewrite classes for on-device execution


– Geometry, Physics, Particle, Transporter


• Put CPU-intensive routines on the GPU

–  Particle geometry tracking

–  Cross section sampling and collisions

–  Tallying


• Run a simplified reactor assembly problem

• Get new timing profile using GPUs
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The immediate derailing of the initial plan!
• Adding -­‐acc flag broke our code


–  No OpenACC (or other) pragmas even being used

–  Unintelligible errors emitted from a standard library 

include inside Trilinos

–  Split OpenACC-dependent code into a subpackage that 

uses that flag, preventing its propagation elsewhere


• At least a day of team effort with Nvidia/PGI to get 
a C++ class with multiple vectors compiling
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The final plan!
• Attempt to write an adapter class to flatten CPU 

classes into data structures suitable for OpenACC

• Write a simple random number generator

• Write a simple brick mesh ray tracer that can be 

parallelized with OpenACC

• Write simple OpenACC-enabled multigroup physics 

with data access and collisions
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What actually was accomplished 
• 23 PGI compiler bug reports


–  PGI is the only compiler to support both 
OpenACC and C++11


– We were probably the first group to use both in a 
production environment


• Primitive multigroup physics on the GPU

–  Driven through unit tests, reproduced CPU results


• Successfully ray-traced particles on brick mesh 
on the GPU

–  20X faster if all particles do the same thing

–  15X faster with divergence
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C++ suggestions for OpenACC!
• Separate compilation units for ACC code


–  Inline keyword gives the compilers trouble; always write 
in .cc files


–  Include as few headers as possible (no Trilinos) to avoid 
compiler errors from non-ACC code and to reduce 
compiler time


• CPU data management with std::vector, then 
copy address to raw pointer for OpenACC


• Complexity hidden by ACC means more mysteries:

–  Do not rely on thread-private data 

 84, Accelerator restriction: scalar variable live-out from loop: seed  
 98, Loop carried scalar dependence for 'seed' at line 104"

–  Issues with reduction operations on scalars

–  Do not use “const” class member data
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Positive takeaways!
• Learned basics of OpenACC and how it can be 

used in a C++ environment

• Better understanding of the heterogeneous 

architecture and how it relates to OpenACC 
directives (prior knowledge of CUDA is helpful)


• For very simplified and specific MC problems, we 
may be able to achieve speedup and the ability to 
run full problems on the GPU using Profugus (with 
a lot of rewriting)
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Negative takeaways!
• Existing MC algorithms are fundamentally 

incompatible with OpenACC-type usage

– Monte Carlo does not have nested, fixed-length loops

– Memory-managed objects cannot be accelerated


• C++, PGI, and OpenACC do not currently get along

–  Two weeks preparation to compile with PGI on Titan

–  C++11 incompatible with installed Cray compiler wrapper

–  Profiling tool issues with the code

– Mystery compiler errors when turning on -­‐acc	
  on PGI


• No OpenACC libraries yet

– We had write a simple pseudorandom number generator

–  No microkernels or algorithms for sorting, binary search
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Concluding comments!
• Hackathon was critical to kick-starting our 

investigation into Monte Carlo on the GPU

–  Resources: the compiler experts are there to help you

–  Time: you have a solid week to work in a focused 

environment with one task at hand

–  Perspective: you are not the only team struggling!


• OpenACC feasibility for C++

–  #pragma	
  is not very pragmatic (inherently incompatible 

with C++ features): appropriate for Fortran

–  Compiler and environment are very difficult to get working


• Our next step: Kokkos as template-based 
abstraction layer
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Profugus:

http://ornl-cees.github.io/Profugus/



