
ORNL is managed by UT–Battelle for the U.S. Department of Energy. 

A first strike at an OpenACC!
C++ Monte Carlo code!

Seth R Johnson, Ph.D.

R&D Staff, Monte Carlo Methods

Radiation Transport Group


Hackathon Mentors: 
Wayne Joubert

Jeff Larkin


Exnihilo team: 
Greg Davidson

Tom Evans

Stephen Hamilton

Seth Johnson

Tara Pandya




2 C++ Monte Carlo OpenACC 

The codes !
• Exnihilo: radiation 

transport framework

– Multi-application (fusion, 

fission, detectors, 
homeland security)


–  Export controlled


• Profugus mini-app:

– Written for algorithmic 

and HPC development

–  Limited capability

–  Reduced complexity




3 C++ Monte Carlo OpenACC 

Introduction to the code environment!
• C++11: unordered maps, auto, lambdas, etc.

• TPLs: Trilinos, HDF5

• Data structures are not POD, have irregular shape


– Many distinct objects, dynamically sized vectors, shared 
pointers, etc. trade convenience for poorer data locality


–  Examples: particle, geometry cell, material attributes


• Production environment: Chester (OLCF cluster)

–  PGI 14.7.0 (a few months old)

–  CUDA 5.5 (more than 2 years old)


Materials

Material


Cross section data


Geometry


Assy 1
 Assy 2
 Assy 3


...




4 C++ Monte Carlo OpenACC 

Introduction to Monte Carlo for neutronics!

YES

particle born

calculate distance to collision

calculate distance to boundary

distance = collision

process surfaceparticle escapes

process collision particle killed

NO

YES

NO

YES

NO



5 C++ Monte Carlo OpenACC 

Algorithmic challenges!
•  Inherently stochastic process


–  Fast, long-period random number sampling required

–  Highly divergent code paths between loops

–  There is no fixed-length nested “for loop” to parallelize


• Complex data structures built to mirror physical 
processes

–  Indirection, dynamic allocation, irregular data shapes

–  There is no homogeneous multi-dimensional array of data




6 C++ Monte Carlo OpenACC 

Initial timing profile!

• Ran a semi-realistic reactor assembly problem

• No compute-intensive bottlenecks to offload


mc::Manager::solve
18.19%
(0.00%)
1×

profugus::KCode_Solver::solve
18.19%
(0.00%)
1×

18.19%
1×

profugus::KCode_Solver::initialize
1.11%
(0.00%)
1×

1.11%
1×

profugus::Source_Transporter::solve
16.19%
(0.00%)
2×

16.19%
2×

profugus::Fission_Source::build_source
0.74%
(0.00%)
2×

0.74%
2×

profugus::Tallier::build
0.74%
(0.74%)
2×

0.74%
2×

profugus::Domain_Transporter::transport
13.77%
(0.63%)
204148×

13.77%
204148×

profugus::Fission_Source::get_particle
2.34%
(0.06%)
204148×

2.34%
204148×

profugus::Source::make_RNG
1.11%
(0.00%)
3×

0.74%
2×

profugus::Geometry::move_to_point
0.76%
(0.06%)
8759551×

0.76%
8759551×

profugus::Geometry::distance_to_boundary
3.22%
(0.05%)

24437238×

3.22%
24437238×

profugus::Physics::collide
2.94%
(1.76%)
8759551×

2.94%
8759551×

profugus::Geometry::move_to_surface
2.15%
(0.06%)

15677687×

2.15%
15677687×

profugus::Physics::total
1.79%
(1.79%)

48874476×

0.89%
24437238×

profugus::Physics::sample_fission_site
1.38%
(1.34%)
8759551×

1.38%
8759551×

profugus::Tallier::path_length
1.33%
(0.39%)

24437238×

1.33%
24437238×

profugus::Geometry::initialize
1.74%
(0.45%)
740264×

1.74%
740264×

profugus::RTK_Array::update_state
0.69%
(0.66%)
8759551×

0.69%
8759551×

profugus::RTK_Array::distance_to_boundary
3.17%
(0.73%)

24437238×

3.17%
24437238×

profugus::Physics::sample_group
0.88%
(0.88%)
8759551×

0.88%
8759551×

profugus::RTK_Array::cross_surface
2.09%
(0.17%)

15677687×

2.09%
15677687×

profugus::Keff_Tally::accumulate
0.94%
(0.05%)

24437238×

0.94%
24437238×

profugus::RTK_Array::transform
0.99%
(0.99%)

32079032×

0.75%
24437238×

profugus::RTK_Cell::distance_to_boundary
1.70%
(1.56%)

24437238×

1.70%
24437238×

profugus::RTK_Array::initialize
1.29%
(0.96%)
740264×

1.29%
740264×

profugus::RTK_Array::determine_boundary_crossings
0.97%
(0.39%)

15677687×

0.97%
15677687×

profugus::RTK_Array::update_coordinates
0.95%
(0.52%)
6901530×

0.95%
6901530×

profugus::RTK_Array::determine_boundary_crossings
0.59%
(0.59%)

15677687×

0.59%
15677687×

init_rng
1.48%
(0.00%)
4×

initialize
1.33%
(1.17%)
4×

1.33%
4×

0.89%
24437238×

profugus::RNG_Control::rng
1.11%
(0.00%)
3×

1.11%
3×

1.11%
3×

Particle transport loop


Eight routines 
each take


5–20% of time




7 C++ Monte Carlo OpenACC 

The initial plan!
• Rewrite classes for on-device execution


– Geometry, Physics, Particle, Transporter


• Put CPU-intensive routines on the GPU

–  Particle geometry tracking

–  Cross section sampling and collisions

–  Tallying


• Run a simplified reactor assembly problem

• Get new timing profile using GPUs




8 C++ Monte Carlo OpenACC 

The immediate derailing of the initial plan!
• Adding -­‐acc flag broke our code


–  No OpenACC (or other) pragmas even being used

–  Unintelligible errors emitted from a standard library 

include inside Trilinos

–  Split OpenACC-dependent code into a subpackage that 

uses that flag, preventing its propagation elsewhere


• At least a day of team effort with Nvidia/PGI to get 
a C++ class with multiple vectors compiling







9 C++ Monte Carlo OpenACC 

The final plan!
• Attempt to write an adapter class to flatten CPU 

classes into data structures suitable for OpenACC

• Write a simple random number generator

• Write a simple brick mesh ray tracer that can be 

parallelized with OpenACC

• Write simple OpenACC-enabled multigroup physics 

with data access and collisions




10 C++ Monte Carlo OpenACC 

What actually was accomplished 
• 23 PGI compiler bug reports


–  PGI is the only compiler to support both 
OpenACC and C++11


– We were probably the first group to use both in a 
production environment


• Primitive multigroup physics on the GPU

–  Driven through unit tests, reproduced CPU results


• Successfully ray-traced particles on brick mesh 
on the GPU

–  20X faster if all particles do the same thing

–  15X faster with divergence




11 C++ Monte Carlo OpenACC 

C++ suggestions for OpenACC!
• Separate compilation units for ACC code


–  Inline keyword gives the compilers trouble; always write 
in .cc files


–  Include as few headers as possible (no Trilinos) to avoid 
compiler errors from non-ACC code and to reduce 
compiler time


• CPU data management with std::vector, then 
copy address to raw pointer for OpenACC


• Complexity hidden by ACC means more mysteries:

–  Do not rely on thread-private data 

 84, Accelerator restriction: scalar variable live-out from loop: seed  
 98, Loop carried scalar dependence for 'seed' at line 104"

–  Issues with reduction operations on scalars

–  Do not use “const” class member data




12 C++ Monte Carlo OpenACC 

Positive takeaways!
• Learned basics of OpenACC and how it can be 

used in a C++ environment

• Better understanding of the heterogeneous 

architecture and how it relates to OpenACC 
directives (prior knowledge of CUDA is helpful)


• For very simplified and specific MC problems, we 
may be able to achieve speedup and the ability to 
run full problems on the GPU using Profugus (with 
a lot of rewriting)




13 C++ Monte Carlo OpenACC 

Negative takeaways!
• Existing MC algorithms are fundamentally 

incompatible with OpenACC-type usage

– Monte Carlo does not have nested, fixed-length loops

– Memory-managed objects cannot be accelerated


• C++, PGI, and OpenACC do not currently get along

–  Two weeks preparation to compile with PGI on Titan

–  C++11 incompatible with installed Cray compiler wrapper

–  Profiling tool issues with the code

– Mystery compiler errors when turning on -­‐acc	
  on PGI


• No OpenACC libraries yet

– We had write a simple pseudorandom number generator

–  No microkernels or algorithms for sorting, binary search




14 C++ Monte Carlo OpenACC 

Concluding comments!
• Hackathon was critical to kick-starting our 

investigation into Monte Carlo on the GPU

–  Resources: the compiler experts are there to help you

–  Time: you have a solid week to work in a focused 

environment with one task at hand

–  Perspective: you are not the only team struggling!


• OpenACC feasibility for C++

–  #pragma	
  is not very pragmatic (inherently incompatible 

with C++ features): appropriate for Fortran

–  Compiler and environment are very difficult to get working


• Our next step: Kokkos as template-based 
abstraction layer




15 C++ Monte Carlo OpenACC 

Acknowledgements!
• This research used resources of the Oak Ridge 

Leadership Computing Facility at the Oak Ridge 
National Laboratory, which is supported by the 
Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC05-00OR22725


• Thanks to our mentors Jeff and Wayne (and to 
Matt) for their help!


• And thanks to Fernanda and OLCF for making the 
Hackathon happen!


Profugus:

http://ornl-cees.github.io/Profugus/



