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Agenda 

 Background 

 HA-PACS / AC-Crest Project 

 Introduction of HA-PACS / TCA 
 Organization of TCA 

 PEACH2 Board designed for TCA 

 Evaluation of Basic 
Performance 

 Collective Communications 

 Implementation Examples 

 Performance Evaluation 

 

 

 Application Examples 
 QUDA (QCD) 

 FFTE (FFT) 

 Introduction of XcalableACC  
 Concept 

 Code Examples 

 Evaluations 

 Summary 
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Current Trend of HPC using GPU Computing 

 Advantageous Features 
 High peak performance / cost ratio 

 High peak performance / power ratio 

 Examples of HPC System: 
 GPU Clusters and MPPs in TOP500 

(Nov. 2014) 
 2nd: Titan (NVIDIA K20X, 27 PF) 

 6th: Piz Daint (NVIDIA K20X, 7.8 PF) 

 10th: Cray CS-Storm (NVIDIA K40, 6.1 
PF) 

 15th: TSUBAME2.5 (NVIDIA K20X, 5.6 
PF) 

 48 systems use NVIDIA GPUs. 
 

 GPU Clusters in Green500 (Nov. 
2014) (“Greenest” Supercomputers 
ranked in Top500) 
 3rd: TSUBAME-KFC (NVIDIA K20X, 4.4 

GF/W) 

 4th: Cray Storm1 (NVIDIA K40, 3.9 GF / 
W) 

 7th: HA-PACS/TCA (NVIDIA K20X, 3.5 
GF/W) 

 8 systems of Top10 use NVIDIA GPUs. 
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Issues of GPU Computing 

 Data I/O performance limitation 
 Ex) K20X: PCIe gen2 x16 

                  Peak Performance: 8GB/s (I/O) ⇔ 1.3 TFLOPS (Computation) 

 Communication bottleneck becomes significant on multi GPU application 

 Strong-scaling on GPU cluster 
 Important to shorten Turn-Around Time of production-run  

 Heavy impact of communication latency 

 Ultra-low latency between GPUs is important for next generation’s HPC 

Our target is developing a direct communication system between external 
GPUs for a feasibility study for future accelerated computing. 

⇒ “Tightly Coupled Accelerators (TCA)” architecture  
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HA-PACS Project 

 HA-PACS (Highly Accelerated Parallel 
Advanced system for Computational 
Sciences) 

 8th generation of PAX/PACS series 
supercomputer in University of 
Tsukuba 

 FY2011-2013, operation until 
FY2016(?) 

 Promotion of computational science 
applications in key areas in CCS-
Tsukuba 

 Target field: QCD, astrophysics, 
QM/MM (quantum mechanics / 
molecular mechanics, bioscience) 

 
 

HA-PACS is not only a “commodity GPU 
cluster” but also experiment platform 
 HA-PACS base cluster 

 for development of GPU-accelerated code 
for target fields, and performing product-run 

 Now in operation since Feb. 2012 

 HA-PACS/TCA (TCA = Tightly Coupled 
Accelerators)  
 for elementary research on direct 

communication technology for accelerated 
computing  

 Our original communication chip named 
“PEACH2” was installed in each node. 

 Now in operation since Nov. 2013 
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AC-CREST project 

 Project “Research and Development on Unified Environment of 
Accelerated Computing and Interconnection for Post-Petascale 
Era” (AC-CREST) 
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 Objectives 
 Realization of high-performance (direct) 

communication among accelerators 

 Development of system software supporting 
communication system among accelerators 

 Development of parallel language and 
compilers 

 Higher productivity 

 Highly optimized (offload, communication) 

 Development of practical applications 

 Supported by JST-CREST 

“Development of System 

Software Technologies for 

post-Peta Scale High 

Performance Computing” 

program 



What is “Tightly Coupled Accelerators (TCA)” ? 

Concept: 

 Direct connection between accelerators (GPUs) 

over the nodes without CPU assistance 

 Eliminate extra memory copies to the host 

 Reduce latency, improve strong scaling with small 

data size 

 Enable hardware support for complicated 

communication patterns 
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Communication on TCA Architecture  
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PCIe PEACH2 PEACH2 

 Using PCIe as a communication link 
between accelerators over the nodes 

 Direct device P2P communication is 
available thru PCIe. 

 PEACH2:  
PCI Express Adaptive 

Communication Hub ver. 2 

 Implementation of the 

interface and data 

transfer engine for TCA 
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GPU Communication with traditional MPI 

 Traditional MPI using InfiniBand requires data copy  
3 times 

 Data copy between CPU and GPU (1 and 3) have to perform 
manually 
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GPU Communication with IB/GDR 

 The InfiniBand controller read and write GPU memory 

directly (with GDR) 

 Temporal data copy is eliminated 

 Lower latency than the previous method 

 Protocol conversion is still needed 
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GPU Communication with TCA (PEACH2) 

 TCA does not need protocol conversion 

 direct data copy using GDR 

 much lower latency than InfiniBand 
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TCA node structure example 

 PEACH2 can access all 

GPUs 

 NVIDIA Kepler architecture 

+ “GPUDirect Support for 

RDMA” are required. 

 Connect among 3 nodes 

using remaining PEACH2 

port 

 Similar to ordinary GPU cluster 
configuration except PEACH2 

 80 PCIe lanes are required 
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TCA node structure example 

Actually, 

 Performance over QPI is 

miserable. 

 

 PEACH2 is available for GPU0, 

GPU1. 

 Note that InfiniBand with GPU 

Direct for RDMA is available 

only for GPU2, GPU3. 

 Similar to ordinary GPU cluster 
configuration except PEACH2 

 80 PCIe lanes are required 
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Design of PEACH2 

 Implement by FPGA with four 
PCIe Gen.2 IPs 

 Altera Stratix IV GX 

 Prototyping, flexible 
enhancement 

 Sufficient communication 
bandwidth 

 PCI Express Gen2 x8 for each 
port (40Gbps = IB QDR) 

 Sophisticated DMA controller 
 Chaining DMA, Block-stride transfer 

function 

 Latency reduction 

 Hardwired logic 

 Low-overhead routing 
mechanism 

 Efficient address mapping in 
PCIe address area using unused 
bits 

 Simple comparator for decision 
of output port 

It is not only a proof-of-concept 
implementation, but it will also be 
available for product-run in GPU 
cluster.  
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PEACH2 board (Production version for HA-PACS/TCA)  
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Main board 
+ sub board Most part operates at 250 MHz  

(PCIe Gen2 logic runs at 250MHz) 

PCI Express x8 card edge 

Power supply 
for various voltage 

DDR3- 
SDRAM 

FPGA 
(Altera Stratix IV 

 530GX) 

PCIe x16 cable connecter PCIe x8 cable connecter 



 

HA-PACS/TCA Compute Node 
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PEACH2 Board is installed here! 

Rear View 

Front View 
 (8 node / rack） 

3U height 



Inside of HA-PACS/TCA Compute Node 
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Spec. of HA-PACS base cluster & HA-PACS/TCA 
Base cluster (Feb. 2012) TCA (Nov. 2013) 

Node CRAY GreenBlade 8204 CRAY 3623G4-SM 

   MotherBoard Intel Washington Pass SuperMicro X9DRG-QF 

   CPU Intel Xeon E5-2670 x 2 socket 

(SandyBridge-EP, 2.6GHz 8 core) x2 

Intel Xeon E5-2680 v2 x 2 socket 

(IvyBridge-EP, 2.8GHz 10 core) x2 

   Memory DDR3-1600 128 GB DDR3-1866 128 GB 

   GPU NVIDIA M2090 x4 NVIDIA K20X x 4 

# of Nodes 

(Racks) 

268 (26) 64 (10) 

Interconnect Mellanox InfiniBand QDR x2 (Connect X-3) Mellanox InfiniBand QDR x2 + PEACH2 

Peak Perf. 802 TFlops 364 TFlops 

Power  408 kW 99.3 kW 
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Totally, HA-PACS is over 1PFlops system ! 



HA-PACS/TCA (Compute Node) 

(2.8 GHz x 8 flop/clock) 

Total: 5.688 TFLOPS 

8 GB/s 

AVX 

1.31 TFLOPSx4 
=5.24 TFLOPS 

22.4 GFLOPS x20 
=448.0 GFLOPS 

(16 GB, 14.9 GB/s)x8 
=128 GB, 119.4 GB/s 

(6 GB, 250 GB/s)x4 
=24 GB, 1 TB/s 

4 Channels 
1,866 MHz 
59.7 GB/sec 

4 Channels 
1,866 MHz 
59.7 GB/sec 

Ivy Bridge Ivy Bridge 
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HA-PACS/TCA (since Nov. 2013) + Base cluster 
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Base cluster 

TCA 

LINPACK: 277 Tflops 
 (Efficiency 76%) 

3.52GFLOPS/W #3 Green500 
 at Nov. 2013 



Configuration of TCA Sub-cluster (16 nodes/group) 

 Each group consists of 2 
racks, 16nodes. HA-
PACS/TCA includes 4 TCA 
groups. 

 Orange: Ring 

 Red: Cross link between 2 
rings 

 In TCA sub-cluster, 32 GPUs 
can be treated seamlessly. 
 limited to 2 GPUs under the 

same socket per node  
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Communication on TCA 

 TCA provides two types of 

communications. 

 DMA controller function 

 Chaining 

 Multiple DMA descriptors chained 

on memory 

 DMA transactions are automatically 

operated by HW 

 Block-stride support 

 DMA Engine with 4ch 
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Comm. 
type 

Min. 
Latency 

Band
width 

How 
working 

Comm. 
patterns 

DMA Low 
(< 2us) 

High DMA 
controller 

Any CPU 
or GPU 

PIO Very low 
( < 1us) 

Low CPU’s write 
operation 

CPU-CPU 

Source 

Destination 

Length 

Flags 

Next 

Source 

Destination 

Length 

Flags 

Next 

Source 

Destination 

Length 

Flags 

Next = NULL 

Head of 
Descriptors 

DMAC Control Reg. 



Evaluation Results 

 Ping-pong performance between 
nodes 
 Latency and bandwidth 

 Written as application 

 Comparison 
 MVAPICH2-GDR 2.0b  (with/without 

GPU Direct support) for GPU-GPU 
communication on TCA nodes 

 A InfiniBand QDR link (40Gbps) is used, 
which has the same performance as 
PEACH2. 

 Performance over QPI on TCA nodes 

 In order to access GPU memory by 

the other device, “GPU Direct 

support for RDMA” in CUDA5 API is 

used. 

 Special driver named “TCA p2p 

driver” to enable memory 

mapping is developed. 

 “PEACH2 driver” to control the 

board is also developed. 
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Minimum Latency 
(nearest neighbor comm.) 

 PIO: CPU to CPU: 0.8 us 

 DMA:CPU to CPU: 1.8 us 
         GPU to GPU: 2.0 us 

cf. MV2-GDR 2.0: 4.5 us (w/ 
GDR), 17 us (w/o GDR) 
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PIO 

DMA 
 (CPU) 

DMA 
 (GPU) 

MVAPICH2-GDR 2.0 



Ping-pong Latency 

Minimum Latency 

(nearest neighbor comm.) 

 PIO: CPU to CPU: 0.8 us 

 DMA:CPU to CPU: 1.8 us 
         GPU to GPU: 2.3 us 

Forwarding overhead 

 200-300 nsec 

 BW converges to the same peak 
with various hop counts 
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 Max. 3.5 GByte/sec 
 95% of theoretical peak 

 Converge to the same peak if hop 
count increases 

 

 

 

 

 GPU - GPU DMA performance is up 
to 2.8 GByte/sec. 
 better than MV2GDR under < 1MB 

 Over QPI: limited to 360MB/s 

 SB(SandyBridge): limited to 880MB/s 
due to PCIe sw perf. 
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Max Payload Size = 256byte 
Theoretical peak (detailed):  
4GB/sec × 256 / (256 + 24) = 3.66 GB/s 

3.5 Gbyte/s 

DMA 
 (GPU) 

DMA 
 (CPU) 

MVAPICH2 
-GDR 2.0 

DMA 
 (SB, GPU) 

2.8 Gbyte/s 

DMA 
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GPUDirect behavior in MVAPICH2-GDR  

From README 

 MV2_GPUDIRECT_LIMIT 

   * Default: 8192 

 MV2_USE_GPUDIRECT_R

ECEIVE_LIMIT 

   * Default: 131072 

 X <= 8KB: 

GDR read + GDR write 

 8KB < X <= 128KB: 

memcpy H2D + GDR write 

 X > 128KB 

memcpy H2D + memcpy 

D2H 
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Collective Communications 

 Allgather 
 All processes gather data of each 

process. 

 Communication bandwidth as well 
as latency is important. 

 GPU-GPU DMA 

 Allreduce 
 Conduct specified operation 

among data arrays on each 
process and store the results on 
all processes. 

 Latency decides the performance. 

 CPU-CPU PIO with host copy 

 Alltoall 
 All processes exchange specific 

data of each process (transpose). 

 Communication bandwidth is 
important. 

 GPU-GPU DMA, all requests to 
every nodes are chained  

 

 

 

 

 [AsHES2015] (To be appeared) 
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Packet contention might occur on ring, 
optimization should be required. 



Allgather Implementation: Recursive Doubling 

29 

Initial State 
 
 Requires (log2p) steps 

 Ex. p=16 => 4 steps 

 Node mapping optimization 

1. Same hop counts 

between any nodes in 

every step 

2. Communicate data with 

neighbor node in the last 

step 
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Allgather Implementation: Recursive Doubling 

30 

Step 1 
 
 Requires (log2p) steps 

 Ex. p=16 => 4 steps 

 Node mapping optimization 

1. Same hop counts 

between any nodes in 

every step 

2. Communicate data with 

neighbor node in the last 

step 
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Allgather Implementation: Recursive Doubling 

31 

Step 2 
 
 Requires (log2p) steps 

 Ex. p=16 => 4 steps 

 Node mapping optimization 

1. Same hop counts 

between any nodes in 

every step 

2. Communicate data with 

neighbor node in the last 

step 
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Allgather Implementation: Recursive Doubling 
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Step 3 
 
 Requires (log2p) steps 

 Ex. p=16 => 4 steps 

 Node mapping optimization 

1. Same hop counts 

between any nodes in 

every step 

2. Communicate data with 

neighbor node in the last 

step 

Mar. 19, 2015 GPU Technology Conference 2015 



Allgather Implementation: Recursive Doubling 

33 

Step 4 
 
 Requires (log2p) steps 

 Ex. p=16 => 4 steps 

 Node mapping optimization 

1. Same hop counts 

between any nodes in 

every step 

2. Communicate data with 

neighbor node in the last 

step 
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Allgather Performance Comparison among 
Various Algorithms 

 Time for all-gathering 128 KB data 
 N=16384 case in CG method 

 Recursive Doubling shows good performance 
 However, when p=16, TCA is slower than MPI in this size 
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Allreduce Performance 

 Allreduce time for 8 Bytes scalar data 

 Dissemination is the fastest. 
 TCA is more than twice faster than MPI 

 Low latency of TCA works effectively 
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QUDA 

 QUDA: The open source Lattice QCD library 

 widely used as a LQCD library for NVIDIA GPUs 

 Optimized for NVIDIA GPUs 

 All calculation run on GPUs 

 Solves a liner equation using CG method 

 inter-node parallelism support 

 supports multiple GPUs in a node 

 source code is available at github 

 https://github.com/lattice/quda 

[HeteroPar2014]  
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Communication in QUDA 

 Halo data exchange with 

RMA is dominant 

 Write data to neighbor 

processes’ memory region 

 

 Allreduce communication in 

CG  

 latency is important  
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QUDA results: Large Model (16^4) 
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QUDA Results: Small Model (8^4) 
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Summary 

 TCA: Tightly Coupled Accelerators  
 TCA enables direct communication among 

accelerators as an element technology becomes 
a basic technology for next gen’s accelerated 
computing in exa-scale era. 

 PEACH2 board: Implementation for 
realizing TCA using PCIe technology 
 Bandwidth: max. 3.5 Gbyte/sec between CPUs 

(over 95% of theoretical peak), 2.8 Gbyte/sec 
between GPUs 
Min. Latency: 0.8 us (PIO), 1.8 us (DMA between 
CPUs), 2.0 us (DMA between GPUs) 

 GPU-GPU communication over the nodes can be 
utilized with 16 node sub-cluster. 

 Ping-pong program: PEACH2 can achieve 
lower latency than MPI in small data size.  

 
 

 

 

 

 Collective communications on TCA 
 Allreduce: much faster than 2x of MPI 

 Allgather: slightly faster than MPI 

 QUDA: TCA has a good performance 
on short messages 
 Small Model: All configurations 

 But, speedup was not shown… 

 Large Model: 8 and 16 nodes 
configurations 

 FFTE: Small & Medium size is good 
for TCA 
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Future Work 

 Offload functions in PEACH2 

 Reduction, etc.  

 Prototype of PEACH3 is under development with PCIe 

Gen3 x8. 

 Altera Stratix V GX 

 Max bandwidth between CPUs is approx. 7GB/s with Gen3 x8, 

double of PEACH2 [CANDAR2014] 
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XcalableACC 

a parallel programming language for 

accelerated parallel systems 

Taisuke Boku 

Center for Computational Sciences 

University of Tsukuba 
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Complexity of parallel GPU programming 

 Multiple orthogonal paradigms 

 MPI – array must be distributed and communicated (two-side or one-side) 

 CUDA, OpenCL, OpenACC – memory allocation, data movement (to/from 
host), computation 

 controlling multiple devices if there are – CUDA 4.0 or with OpenMP 
multithreading 

 Issues 

 how to combine array distribution, internal-communication, external-
communication, ... 

 simple and easy-to-understand programming model is required for high 
productivity 
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XcalableACC (XACC) 

 PGAS language (C & Fortran) with directive base parallel 

programming for massively parallel accelerated computing 

 Based on our traditional PGAS language XcalableMP (XMP) 

 OpenACC is used for control on accelerating devices 

 Developed in AICS, RIKEN under JST-CREST joint project 

 We implement the compiler and run-time system both for general 

MPI-base system and TCA architecture 
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Outline of base language XcalableMP 

 Execution model: SPMD (=MPI) 

 Two programming model on data view 

 Global View (PGAS): based on data parallel concept, directives similar to OpenMP is used for 
data and task distribution (easy programming) 

 Local View: based on local data and explicit communication (easy performance tuning) 

 OpenMP-like directives 

 Incremental parallelization from original sequential code 

 Low cost for parallelization -> high productivity 

 Not “fully automatic parallelization”, but user must do: 

 Each node processes the local data on that node 

 User can clearly imagine the data distribution and parallelization for easiness of tuning 

 Communication target of variables (arrays) and partitions can be simply specified 

 Communication point is specified by user, in easy manner 
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#pragma xmp nodes p(4)  declare node set  

#pragma xmp template t(0:99)  declare template 

#pragma align array[i] with t(i)  distribute array : owner of t(i) has a[i] 

#pragma xmp distribute t(BLOCK) on p distribute template 

 Template 
 virtual array representing data(index) space 

 array distribution, work-sharing must be done using template 

template t(0:99) 
0 100 

double array[100]; 
0 100 

p(1) p(2) p(3) p(4) 
0 100 25 50 75 

p(1) p(2) p(3) p(4)   array[] 

0 100 25 50 75 

Example) 

  Data Distibution Using Template 
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  Data Synchronization of Array(shadow)  

 Shadow Region 
 in XMP, memory access is always local 
 duplicated overlapped data distributed onto other nodes 
 data synchronization: reflect directive 
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NODE2 

NODE3 

NODE4 

NODE1 

     a[] 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

#pragma xmp shadow a[1:1]  declare shadow 

#pragma xmp reflect a   synchronize shadow 



 #pragma xmp gather(var=list) 

 gather array data (collect entire elements) 

process1 

process2 

process3 

process0 

array[] 

all elements of the array get correct data 

Data Synchronization of Array(gather)  
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  Internode Communication 

 broadcast 

 #pragma xmp bcast var on node from node 
 
 barrier synchronization 

 #pragma xmp barrier 
 
 reduce operation 

 #pragma xmp reduction (var:op) 
 
 data movement in global view 

 #pragma xmp gmove 
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Processing model of XACC 
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#0 #1 

Distribution among nodes 

Distribution among ACCs. 
CPU 

ACC 

Array/Work 

Direct Comm. 
between ACCs 

Comm. 
between CPUs 

#pragma acc device d = nvidia(0:3) 
 
#pragma xmp reflect_init (a) device 
 
#pragma xmp loop (i) on t(i) 
for (int i = 0; i < 100; i++){ 
  #pragma acc kernels loop on_device(d) 
  for (int j = 0; j < 100; j++){ 
    a[i][j] = ... 
  } 
} 
 
#pragma xmp reflect_do (a) 
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Two implementations of XACC 

 based on traditional communication library 

 for MPI 

 directive-base communication on distributed arrays are 

automatically performed with OpenACC data I/O and MPI 

communication 

 based on TCA 

 using TCA for direct GPU-memory copy 
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Example of XcalableACC program 

double u[XSIZE][YSIZE], uu[XSIZE][YSIZE]; 
#pragma xmp nodes p(x, y) 
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1) 
#pragma xmp distribute t(block, block) onto p 
#pragma xmp align [j][i] with t(i,j) :: u, uu 
#pragma xmp shadow uu[1:1][1:1] 
… 
#pragma acc data copy(u) copyin(uu) 
{ 
  for(k=0; k<MAX_ITER; k++){ 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
   for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        uu[x][y] = u[x][y]; 
 
#pragma xmp reflect (uu) acc 
 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
    for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        u[x][y] = (uu[x-1][y]+uu[x+1][y]+ 
                   uu[x][y-1]+uu[x][y+1])/4.0; 
  } // end k 
} // end data 

2-D Laplace Eq. 
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double u[XSIZE][YSIZE], uu[XSIZE][YSIZE]; 
#pragma xmp nodes p(x, y) 
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1) 
#pragma xmp distribute t(block, block) onto p 
#pragma xmp align [j][i] with t(i,j) :: u, uu 
#pragma xmp shadow uu[1:1][1:1] 
… 
#pragma acc data copy(u) copyin(uu) 
{ 
  for(k=0; k<MAX_ITER; k++){ 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
   for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        uu[x][y] = u[x][y]; 
 
#pragma xmp reflect (uu) 
 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
    for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        u[x][y] = (uu[x-1][y]+uu[x+1][y]+ 
                   uu[x][y-1]+uu[x][y+1])/4.0; 
  } // end k 
} // end data 

array distribution and “sleeve” 
declaration 

exchange sleeves on array “uu” 

2-D Laplace Eq. 

Example of XcalableACC program 
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double u[XSIZE][YSIZE], uu[XSIZE][YSIZE]; 
#pragma xmp nodes p(x, y) 
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1) 
#pragma xmp distribute t(block, block) onto p 
#pragma xmp align [j][i] with t(i,j) :: u, uu 
#pragma xmp shadow uu[1:1][1:1] 
… 
#pragma acc data copy(u) copyin(uu) 
{ 
  for(k=0; k<MAX_ITER; k++){ 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
   for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        uu[x][y] = u[x][y]; 
 
#pragma xmp reflect (uu) acc 
 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
    for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        u[x][y] = (uu[x-1][y]+uu[x+1][y]+ 
                   uu[x][y-1]+uu[x][y+1])/4.0; 
  } // end k 
} // end data 

copy partial (distributed) array to 
device memory 

distributed array by XMP is 
processed according to OpenACC 
directive 

“acc” clause indicates to 
target the array on device 
memory 

Example of XcalableACC program 

2-D Laplace Eq. 

array distribution and “sleeve” 
declaration 

exchange sleeves on array “uu” 
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double u[XSIZE][YSIZE], uu[XSIZE][YSIZE]; 
#pragma xmp nodes p(x, y) 
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1) 
#pragma xmp distribute t(block, block) onto p 
#pragma xmp align [j][i] with t(i,j) :: u, uu 
#pragma xmp shadow uu[1:1][1:1] 
… 
#pragma acc data copy(u) copyin(uu) 
{ 
  for(k=0; k<MAX_ITER; k++){ 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
   for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        uu[x][y] = u[x][y]; 
 
#pragma xmp reflect (uu) acc 
 
#pragma xmp loop (y,x) on t(y,x) 
#pragma acc parallel loop collapse(2) 
    for(x=1; x<XSIZE-1; x++) 
      for(y=1; y<YSIZE-1; y++) 
        u[x][y] = (uu[x-1][y]+uu[x+1][y]+ 
                   uu[x][y-1]+uu[x][y+1])/4.0; 
  } // end k 
} // end data 

Example of XcalableACC program 

copy partial (distributed) array to 
device memory 

distributed array by XMP is 
processed according to OpenACC 
directive 

2-D Laplace Eq. 
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Performance on Himeno Benchmark by XcalableACC 

2-D stencil computing for fluid dynamics 
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size M (128x128x256) 
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For size L, size of sleeve area is approximately 520KB, so TCA’s advantage is small compared to 

MVAPICH2-GDR. 

Additionally, TCA requires a barrier synch. after DMA transfer to cause additional overhead 

better 
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Summary 

 TCA is a basic research on the possibility on direct network 
between accelerators (GPUs) on current available technology 

 Toward strong-scaling on post-peta to exascale HPC research, such 
a direct network for accelerators is essential 

 Language/Programming is also very important issue for high 
productivity over multiple programming paradigms 

 XcalableACC + TCA is a solution 

 Awarded in HPC Challenge Class2 Best Performance Award at 
SC14 
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