
Tightly Coupled Accelerators

with Proprietary Interconnect and

Its Programming and Applications

Toshihiro Hanawa
Information Technology Center, The University of Tokyo

Taisuke Boku
Center for Computational Sciences, University of Tsukuba

Collaboration with

Yuetsu Kodama, Mitsuhisa Sato, Masayuki Umemura @ CCS, Univ. of Tsukuba

Hitoshi Murai @ Riken AICS, Hideharu Amano @ Keio Univ.

Mar. 19, 2015 GPU Technology Conference 2015 1

Agenda

 Background

 HA-PACS / AC-Crest Project

 Introduction of HA-PACS / TCA
 Organization of TCA

 PEACH2 Board designed for TCA

 Evaluation of Basic
Performance

 Collective Communications

 Implementation Examples

 Performance Evaluation

 Application Examples
 QUDA (QCD)

 FFTE (FFT)

 Introduction of XcalableACC
 Concept

 Code Examples

 Evaluations

 Summary

Mar. 19, 2015 GPU Technology Conference 2015 2

Current Trend of HPC using GPU Computing

 Advantageous Features
 High peak performance / cost ratio

 High peak performance / power ratio

 Examples of HPC System:
 GPU Clusters and MPPs in TOP500

(Nov. 2014)
 2nd: Titan (NVIDIA K20X, 27 PF)

 6th: Piz Daint (NVIDIA K20X, 7.8 PF)

 10th: Cray CS-Storm (NVIDIA K40, 6.1
PF)

 15th: TSUBAME2.5 (NVIDIA K20X, 5.6
PF)

 48 systems use NVIDIA GPUs.

 GPU Clusters in Green500 (Nov.
2014) (“Greenest” Supercomputers
ranked in Top500)
 3rd: TSUBAME-KFC (NVIDIA K20X, 4.4

GF/W)

 4th: Cray Storm1 (NVIDIA K40, 3.9 GF /
W)

 7th: HA-PACS/TCA (NVIDIA K20X, 3.5
GF/W)

 8 systems of Top10 use NVIDIA GPUs.

Mar. 19, 2015 GPU Technology Conference 2015 3

Issues of GPU Computing

 Data I/O performance limitation
 Ex) K20X: PCIe gen2 x16

 Peak Performance: 8GB/s (I/O) ⇔ 1.3 TFLOPS (Computation)

 Communication bottleneck becomes significant on multi GPU application

 Strong-scaling on GPU cluster
 Important to shorten Turn-Around Time of production-run

 Heavy impact of communication latency

 Ultra-low latency between GPUs is important for next generation’s HPC

Our target is developing a direct communication system between external
GPUs for a feasibility study for future accelerated computing.

⇒ “Tightly Coupled Accelerators (TCA)” architecture

Mar. 19, 2015 GPU Technology Conference 2015 4

HA-PACS Project

 HA-PACS (Highly Accelerated Parallel
Advanced system for Computational
Sciences)

 8th generation of PAX/PACS series
supercomputer in University of
Tsukuba

 FY2011-2013, operation until
FY2016(?)

 Promotion of computational science
applications in key areas in CCS-
Tsukuba

 Target field: QCD, astrophysics,
QM/MM (quantum mechanics /
molecular mechanics, bioscience)

HA-PACS is not only a “commodity GPU
cluster” but also experiment platform
 HA-PACS base cluster

 for development of GPU-accelerated code
for target fields, and performing product-run

 Now in operation since Feb. 2012

 HA-PACS/TCA (TCA = Tightly Coupled
Accelerators)
 for elementary research on direct

communication technology for accelerated
computing

 Our original communication chip named
“PEACH2” was installed in each node.

 Now in operation since Nov. 2013

Mar. 19, 2015 GPU Technology Conference 2015 5

AC-CREST project

 Project “Research and Development on Unified Environment of
Accelerated Computing and Interconnection for Post-Petascale
Era” (AC-CREST)

Mar. 19, 2015 GPU Technology Conference 2015 6

 Objectives
 Realization of high-performance (direct)

communication among accelerators

 Development of system software supporting
communication system among accelerators

 Development of parallel language and
compilers

 Higher productivity

 Highly optimized (offload, communication)

 Development of practical applications

 Supported by JST-CREST

“Development of System

Software Technologies for

post-Peta Scale High

Performance Computing”

program

What is “Tightly Coupled Accelerators (TCA)” ?

Concept:

 Direct connection between accelerators (GPUs)

over the nodes without CPU assistance

 Eliminate extra memory copies to the host

 Reduce latency, improve strong scaling with small

data size

 Enable hardware support for complicated

communication patterns

Mar. 19, 2015 GPU Technology Conference 2015 7

Communication on TCA Architecture

8

CPU

PCIe Switch

Node

CPU Memory

P
C
Ie

GPU

GPU Memory

P
C
e

CPU

PCIe Switch

Node

CPU Memory

P
C
Ie

GPU

GPU Memory

P
C
e

PCIe PEACH2 PEACH2

 Using PCIe as a communication link
between accelerators over the nodes

 Direct device P2P communication is
available thru PCIe.

 PEACH2:
PCI Express Adaptive

Communication Hub ver. 2

 Implementation of the

interface and data

transfer engine for TCA

Mar. 19, 2015 GPU Technology Conference 2015

GPU Communication with traditional MPI

 Traditional MPI using InfiniBand requires data copy
3 times

 Data copy between CPU and GPU (1 and 3) have to perform
manually

Mar. 19, 2015 GPU Technology Conference 2015 9

CPU

GPU

Mem

Mem

PCIe SW

IB IB

CPU

GPU

PCIe SW Mem

Mem

1: Copy from GPU mem
to CPU mem through PCI Express (PCIe)

3: Copy from CPU mem
to GPU mem through PCIe

2: Data transfer over IB

GPU Communication with IB/GDR

 The InfiniBand controller read and write GPU memory

directly (with GDR)

 Temporal data copy is eliminated

 Lower latency than the previous method

 Protocol conversion is still needed

10

CPU

GPU

Mem

Mem

PCIe SW

IB

IB

CPU

GPU

PCIe SW Mem

Mem

1: Direct data transfer
(PCIe -> IB -> PCIe)

Mar. 19, 2015 GPU Technology Conference 2015

GPU Communication with TCA (PEACH2)

 TCA does not need protocol conversion

 direct data copy using GDR

 much lower latency than InfiniBand

11

CPU

GPU

Mem

Mem

PCIe SW

TCA

TCA

CPU

GPU

PCIe SW Mem

Mem

1: Direct data transfer
(PCIe -> PCIe -> PCIe)

Mar. 19, 2015 GPU Technology Conference 2015

TCA node structure example

 PEACH2 can access all

GPUs

 NVIDIA Kepler architecture

+ “GPUDirect Support for

RDMA” are required.

 Connect among 3 nodes

using remaining PEACH2

port

 Similar to ordinary GPU cluster
configuration except PEACH2

 80 PCIe lanes are required

Mar. 19, 2015 GPU Technology Conference 2015

CPU
(Xeon

E5 v2)

CPU
(Xeon

E5 v2) QPI

PCIe

GPU

0

GPU

2

GPU

3

IB

HC

A

PEA

CH2

GPU

1

G2

x8
 G2

x16

 G2

x16

 G3

 x8 G2

x16

 G2

x16

G2

x8

G2

x8

G2

x8 QDR

2port GPU: NVIDIA K20X

12

Single PCI address space

TCA node structure example

Actually,

 Performance over QPI is

miserable.

 PEACH2 is available for GPU0,

GPU1.

 Note that InfiniBand with GPU

Direct for RDMA is available

only for GPU2, GPU3.

 Similar to ordinary GPU cluster
configuration except PEACH2

 80 PCIe lanes are required

Mar. 19, 2015 GPU Technology Conference 2015

CPU
(Xeon

E5 v2)

CPU
(Xeon

E5 v2) QPI

PCIe

GPU

0

GPU

2

GPU

3

IB

HC

A

PEA

CH2

GPU

1

G2

x8
 G2

x16

 G2

x16

 G3

 x8 G2

x16

 G2

x16

G2

x8

G2

x8

G2

x8 GPU: NVIDIA K20X

13

Design of PEACH2

 Implement by FPGA with four
PCIe Gen.2 IPs

 Altera Stratix IV GX

 Prototyping, flexible
enhancement

 Sufficient communication
bandwidth

 PCI Express Gen2 x8 for each
port (40Gbps = IB QDR)

 Sophisticated DMA controller
 Chaining DMA, Block-stride transfer

function

 Latency reduction

 Hardwired logic

 Low-overhead routing
mechanism

 Efficient address mapping in
PCIe address area using unused
bits

 Simple comparator for decision
of output port

It is not only a proof-of-concept
implementation, but it will also be
available for product-run in GPU
cluster.

Mar. 19, 2015 GPU Technology Conference 2015 14

PEACH2 board (Production version for HA-PACS/TCA)

Mar. 19, 2015 GPU Technology Conference 2015 15

Main board
+ sub board Most part operates at 250 MHz

(PCIe Gen2 logic runs at 250MHz)

PCI Express x8 card edge

Power supply
for various voltage

DDR3-
SDRAM

FPGA
(Altera Stratix IV

 530GX)

PCIe x16 cable connecter PCIe x8 cable connecter

HA-PACS/TCA Compute Node

Mar. 19, 2015 GPU Technology Conference 2015 16

PEACH2 Board is installed here!

Rear View

Front View
 (8 node / rack）

3U height

Inside of HA-PACS/TCA Compute Node

Mar. 19, 2015 GPU Technology Conference 2015 17

Spec. of HA-PACS base cluster & HA-PACS/TCA
Base cluster (Feb. 2012) TCA (Nov. 2013)

Node CRAY GreenBlade 8204 CRAY 3623G4-SM

 MotherBoard Intel Washington Pass SuperMicro X9DRG-QF

 CPU Intel Xeon E5-2670 x 2 socket

(SandyBridge-EP, 2.6GHz 8 core) x2

Intel Xeon E5-2680 v2 x 2 socket

(IvyBridge-EP, 2.8GHz 10 core) x2

 Memory DDR3-1600 128 GB DDR3-1866 128 GB

 GPU NVIDIA M2090 x4 NVIDIA K20X x 4

of Nodes

(Racks)

268 (26) 64 (10)

Interconnect Mellanox InfiniBand QDR x2 (Connect X-3) Mellanox InfiniBand QDR x2 + PEACH2

Peak Perf. 802 TFlops 364 TFlops

Power 408 kW 99.3 kW

Mar. 19, 2015 GPU Technology Conference 2015 18

Totally, HA-PACS is over 1PFlops system !

HA-PACS/TCA (Compute Node)

(2.8 GHz x 8 flop/clock)

Total: 5.688 TFLOPS

8 GB/s

AVX

1.31 TFLOPSx4
=5.24 TFLOPS

22.4 GFLOPS x20
=448.0 GFLOPS

(16 GB, 14.9 GB/s)x8
=128 GB, 119.4 GB/s

(6 GB, 250 GB/s)x4
=24 GB, 1 TB/s

4 Channels
1,866 MHz
59.7 GB/sec

4 Channels
1,866 MHz
59.7 GB/sec

Ivy Bridge Ivy Bridge

4 x NVIDIA K20X

G
e
n
 2

 x
 1

6

G
e
n
 2

 x
 1

6

G
e
n
 2

 x
 1

6

G
e
n
 2

 x
 1

6

PEACH2 board
(Proprietary Interconnect for TCA)

G
e
n
 2

 x
 8

G
e
n
 2

 x
 8

G
e
n
 2

 x
 8

Red: upgraded from base-cluster to TCA

Legacy
Devices

Mar. 19, 2015 GPU Technology Conference 2015 19

HA-PACS/TCA (since Nov. 2013) + Base cluster

Mar. 19, 2015 GPU Technology Conference 2015 20

Base cluster

TCA

LINPACK: 277 Tflops
 (Efficiency 76%)

3.52GFLOPS/W #3 Green500
 at Nov. 2013

Configuration of TCA Sub-cluster (16 nodes/group)

 Each group consists of 2
racks, 16nodes. HA-
PACS/TCA includes 4 TCA
groups.

 Orange: Ring

 Red: Cross link between 2
rings

 In TCA sub-cluster, 32 GPUs
can be treated seamlessly.
 limited to 2 GPUs under the

same socket per node

Mar. 19, 2015 GPU Technology Conference 2015 21

Communication on TCA

 TCA provides two types of

communications.

 DMA controller function

 Chaining

 Multiple DMA descriptors chained

on memory

 DMA transactions are automatically

operated by HW

 Block-stride support

 DMA Engine with 4ch

Mar. 19, 2015 GPU Technology Conference 2015 22

Comm.
type

Min.
Latency

Band
width

How
working

Comm.
patterns

DMA Low
(< 2us)

High DMA
controller

Any CPU
or GPU

PIO Very low
(< 1us)

Low CPU’s write
operation

CPU-CPU

Source

Destination

Length

Flags

Next

Source

Destination

Length

Flags

Next

Source

Destination

Length

Flags

Next = NULL

Head of
Descriptors

DMAC Control Reg.

Evaluation Results

 Ping-pong performance between
nodes
 Latency and bandwidth

 Written as application

 Comparison
 MVAPICH2-GDR 2.0b (with/without

GPU Direct support) for GPU-GPU
communication on TCA nodes

 A InfiniBand QDR link (40Gbps) is used,
which has the same performance as
PEACH2.

 Performance over QPI on TCA nodes

 In order to access GPU memory by

the other device, “GPU Direct

support for RDMA” in CUDA5 API is

used.

 Special driver named “TCA p2p

driver” to enable memory

mapping is developed.

 “PEACH2 driver” to control the

board is also developed.

Mar. 19, 2015 GPU Technology Conference 2015 23

0

1

2

3

4

5

6

7

8

9

10

8 64 512 4096 32768
L

a
te

n
c
y
 (

u
s
e
c
)

Data Size (Bytes)

Ping-pong Latency

Minimum Latency
(nearest neighbor comm.)

 PIO: CPU to CPU: 0.8 us

 DMA:CPU to CPU: 1.8 us
 GPU to GPU: 2.0 us

cf. MV2-GDR 2.0: 4.5 us (w/
GDR), 17 us (w/o GDR)

Mar. 19, 2015 GPU Technology Conference 2015 24

PIO

DMA
 (CPU)

DMA
 (GPU)

MVAPICH2-GDR 2.0

Ping-pong Latency

Minimum Latency

(nearest neighbor comm.)

 PIO: CPU to CPU: 0.8 us

 DMA:CPU to CPU: 1.8 us
 GPU to GPU: 2.3 us

Forwarding overhead

 200-300 nsec

 BW converges to the same peak
with various hop counts

Mar. 19, 2015 GPU Technology Conference 2015 25

0

1

2

3

4

5

6

7

8

8 64 512 4096 32768

L
a
te

n
c
y
 (

u
s
e
c
)

Data Size (bytes)

DMA Direct

DMA 1 hop

DMA 2 hop

DMA 3 hop

DMA (CPU)

0

500

1000

1500

2000

2500

3000

3500

4000

8 128 2048 32768 524288

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Size (Bytes)

Ping-pong Bandwidth

 Max. 3.5 GByte/sec
 95% of theoretical peak

 Converge to the same peak if hop
count increases

 GPU - GPU DMA performance is up
to 2.8 GByte/sec.
 better than MV2GDR under < 1MB

 Over QPI: limited to 360MB/s

 SB(SandyBridge): limited to 880MB/s
due to PCIe sw perf.

Mar. 19, 2015 GPU Technology Conference 2015 26

Max Payload Size = 256byte
Theoretical peak (detailed):
4GB/sec × 256 / (256 + 24) = 3.66 GB/s

3.5 Gbyte/s

DMA
 (GPU)

DMA
 (CPU)

MVAPICH2
-GDR 2.0

DMA
 (SB, GPU)

2.8 Gbyte/s

DMA
 (QPI, GPU)

GPUDirect behavior in MVAPICH2-GDR

From README

 MV2_GPUDIRECT_LIMIT

 * Default: 8192

 MV2_USE_GPUDIRECT_R

ECEIVE_LIMIT

 * Default: 131072

 X <= 8KB:

GDR read + GDR write

 8KB < X <= 128KB:

memcpy H2D + GDR write

 X > 128KB

memcpy H2D + memcpy

D2H

Mar. 19, 2015 GPU Technology Conference 2015 27

Collective Communications

 Allgather
 All processes gather data of each

process.

 Communication bandwidth as well
as latency is important.

 GPU-GPU DMA

 Allreduce
 Conduct specified operation

among data arrays on each
process and store the results on
all processes.

 Latency decides the performance.

 CPU-CPU PIO with host copy

 Alltoall
 All processes exchange specific

data of each process (transpose).

 Communication bandwidth is
important.

 GPU-GPU DMA, all requests to
every nodes are chained

 [AsHES2015] (To be appeared)

Mar. 19, 2015 GPU Technology Conference 2015 28

Packet contention might occur on ring,
optimization should be required.

Allgather Implementation: Recursive Doubling

29

Initial State

 Requires (log2p) steps

 Ex. p=16 => 4 steps

 Node mapping optimization

1. Same hop counts

between any nodes in

every step

2. Communicate data with

neighbor node in the last

step

Mar. 19, 2015 GPU Technology Conference 2015

Allgather Implementation: Recursive Doubling

30

Step 1

 Requires (log2p) steps

 Ex. p=16 => 4 steps

 Node mapping optimization

1. Same hop counts

between any nodes in

every step

2. Communicate data with

neighbor node in the last

step

Mar. 19, 2015 GPU Technology Conference 2015

Allgather Implementation: Recursive Doubling

31

Step 2

 Requires (log2p) steps

 Ex. p=16 => 4 steps

 Node mapping optimization

1. Same hop counts

between any nodes in

every step

2. Communicate data with

neighbor node in the last

step

Mar. 19, 2015 GPU Technology Conference 2015

Allgather Implementation: Recursive Doubling

32

Step 3

 Requires (log2p) steps

 Ex. p=16 => 4 steps

 Node mapping optimization

1. Same hop counts

between any nodes in

every step

2. Communicate data with

neighbor node in the last

step

Mar. 19, 2015 GPU Technology Conference 2015

Allgather Implementation: Recursive Doubling

33

Step 4

 Requires (log2p) steps

 Ex. p=16 => 4 steps

 Node mapping optimization

1. Same hop counts

between any nodes in

every step

2. Communicate data with

neighbor node in the last

step

Mar. 19, 2015 GPU Technology Conference 2015

Allgather Performance Comparison among
Various Algorithms

 Time for all-gathering 128 KB data
 N=16384 case in CG method

 Recursive Doubling shows good performance
 However, when p=16, TCA is slower than MPI in this size

34

0
50

100
150
200
250

2 4 8 16C
o
m

m
u
n
ic

a
ti
o
n
 t

im
e

[μ
se

c]

#Processes

Ring Neighbor Exchange Recursive Doubling Dissemination MPI

B
e
tte

r

Mar. 19, 2015 GPU Technology Conference 2015

Allreduce Performance

 Allreduce time for 8 Bytes scalar data

 Dissemination is the fastest.
 TCA is more than twice faster than MPI

 Low latency of TCA works effectively

35

0

10

20

30

2 4 8 16C
o
m

m
u
n
it
io

n
 t

im
e

[μ
se

c]

#Processes

Ring Neighbor Exchange Recursive Doubling Dissemination MPI

B
e
tte

r

Mar. 19, 2015 GPU Technology Conference 2015

QUDA

 QUDA: The open source Lattice QCD library

 widely used as a LQCD library for NVIDIA GPUs

 Optimized for NVIDIA GPUs

 All calculation run on GPUs

 Solves a liner equation using CG method

 inter-node parallelism support

 supports multiple GPUs in a node

 source code is available at github

 https://github.com/lattice/quda

[HeteroPar2014]

36 Mar. 19, 2015 GPU Technology Conference 2015

https://github.com/lattice/quda

Communication in QUDA

 Halo data exchange with

RMA is dominant

 Write data to neighbor

processes’ memory region

 Allreduce communication in

CG

 latency is important

37

Halo data

＋
＋ ＋

＋

Allreduce

Halo data exchange

Mar. 19, 2015 GPU Technology Conference 2015

QUDA results: Large Model (16^4)

38

0

200

400

600

800

1000

1200

1400
M

P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

(2,1) (1,2) (4,1) (2,2) (1,4) (4,2) (2,4) (4,4)

2 Nodes 4 Nodes 8 Nodes 16 Nodes

T
im

e
 p

e
r

it
e

ra
ti

o
n

 [
u

s
]

Calc.

Allreduce

Comm.

(x,y) nodes

1.15 times
speed up
against
MPI-P2P

4 nodes
configuration is the

crossover point.

Message Size per Dimension =
2 × (192KB / # of nodes in each

dim.) Mar. 19, 2015 GPU Technology Conference 2015

QUDA Results: Small Model (8^4)

39

(x,y) nodes

0

200

400

600

800

1000

1200
M

P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

M
P
I-

P
2
P

M
P
I-

R
M

A

T
C
A

(2,1) (1,2) (4,1) (2,2) (1,4) (4,2) (2,4) (4,4)

2 Nodes 4 Nodes 8 Nodes 16 Nodes

T
im

e
 p

e
r

it
e

ra
ti

o
n

 [
u

s
]

Calc.

Allreduce

Comm.

1.96 times
speed up
against
MPI-P2P

Message Size per Dimension =
2 × (24KB / # of nodes in each

dim.) Mar. 19, 2015 GPU Technology Conference 2015

Summary

 TCA: Tightly Coupled Accelerators
 TCA enables direct communication among

accelerators as an element technology becomes
a basic technology for next gen’s accelerated
computing in exa-scale era.

 PEACH2 board: Implementation for
realizing TCA using PCIe technology
 Bandwidth: max. 3.5 Gbyte/sec between CPUs

(over 95% of theoretical peak), 2.8 Gbyte/sec
between GPUs
Min. Latency: 0.8 us (PIO), 1.8 us (DMA between
CPUs), 2.0 us (DMA between GPUs)

 GPU-GPU communication over the nodes can be
utilized with 16 node sub-cluster.

 Ping-pong program: PEACH2 can achieve
lower latency than MPI in small data size.

 Collective communications on TCA
 Allreduce: much faster than 2x of MPI

 Allgather: slightly faster than MPI

 QUDA: TCA has a good performance
on short messages
 Small Model: All configurations

 But, speedup was not shown…

 Large Model: 8 and 16 nodes
configurations

 FFTE: Small & Medium size is good
for TCA

Mar. 19, 2015 GPU Technology Conference 2015 40

Future Work

 Offload functions in PEACH2

 Reduction, etc.

 Prototype of PEACH3 is under development with PCIe

Gen3 x8.

 Altera Stratix V GX

 Max bandwidth between CPUs is approx. 7GB/s with Gen3 x8,

double of PEACH2 [CANDAR2014]

Mar. 19, 2015 GPU Technology Conference 2015 41

XcalableACC

a parallel programming language for

accelerated parallel systems

Taisuke Boku

Center for Computational Sciences

University of Tsukuba

Mar. 19, 2015 GPU Technology Conference 2015 42

Complexity of parallel GPU programming

 Multiple orthogonal paradigms

 MPI – array must be distributed and communicated (two-side or one-side)

 CUDA, OpenCL, OpenACC – memory allocation, data movement (to/from
host), computation

 controlling multiple devices if there are – CUDA 4.0 or with OpenMP
multithreading

 Issues

 how to combine array distribution, internal-communication, external-
communication, ...

 simple and easy-to-understand programming model is required for high
productivity

Mar. 19, 2015 GPU Technology Conference 2015 43

XcalableACC (XACC)

 PGAS language (C & Fortran) with directive base parallel

programming for massively parallel accelerated computing

 Based on our traditional PGAS language XcalableMP (XMP)

 OpenACC is used for control on accelerating devices

 Developed in AICS, RIKEN under JST-CREST joint project

 We implement the compiler and run-time system both for general

MPI-base system and TCA architecture

Mar. 19, 2015 GPU Technology Conference 2015 44

Outline of base language XcalableMP

 Execution model: SPMD (=MPI)

 Two programming model on data view

 Global View (PGAS): based on data parallel concept, directives similar to OpenMP is used for
data and task distribution (easy programming)

 Local View: based on local data and explicit communication (easy performance tuning)

 OpenMP-like directives

 Incremental parallelization from original sequential code

 Low cost for parallelization -> high productivity

 Not “fully automatic parallelization”, but user must do:

 Each node processes the local data on that node

 User can clearly imagine the data distribution and parallelization for easiness of tuning

 Communication target of variables (arrays) and partitions can be simply specified

 Communication point is specified by user, in easy manner

Mar. 19, 2015 GPU Technology Conference 2015 45

#pragma xmp nodes p(4) declare node set

#pragma xmp template t(0:99) declare template

#pragma align array[i] with t(i) distribute array : owner of t(i) has a[i]

#pragma xmp distribute t(BLOCK) on p distribute template

 Template
 virtual array representing data(index) space

 array distribution, work-sharing must be done using template

template t(0:99)
0 100

double array[100];
0 100

p(1) p(2) p(3) p(4)
0 100 25 50 75

p(1) p(2) p(3) p(4) array[]

0 100 25 50 75

Example)

 Data Distibution Using Template

Mar. 19, 2015 GPU Technology Conference 2015 46

 Data Synchronization of Array(shadow)

 Shadow Region
 in XMP, memory access is always local
 duplicated overlapped data distributed onto other nodes
 data synchronization: reflect directive

Mar. 19, 2015 GPU Technology Conference 2015 47

NODE2

NODE3

NODE4

NODE1

 a[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#pragma xmp shadow a[1:1] declare shadow

#pragma xmp reflect a synchronize shadow

 #pragma xmp gather(var=list)

 gather array data (collect entire elements)

process1

process2

process3

process0

array[]

all elements of the array get correct data

Data Synchronization of Array(gather)

Mar. 19, 2015 GPU Technology Conference 2015 48

 Internode Communication

 broadcast

 #pragma xmp bcast var on node from node

 barrier synchronization

 #pragma xmp barrier

 reduce operation

 #pragma xmp reduction (var:op)

 data movement in global view

 #pragma xmp gmove

Mar. 19, 2015 GPU Technology Conference 2015 49

Processing model of XACC

Mar. 19, 2015 GPU Technology Conference 2015

#0 #1

Distribution among nodes

Distribution among ACCs.
CPU

ACC

Array/Work

Direct Comm.
between ACCs

Comm.
between CPUs

#pragma acc device d = nvidia(0:3)

#pragma xmp reflect_init (a) device

#pragma xmp loop (i) on t(i)
for (int i = 0; i < 100; i++){
 #pragma acc kernels loop on_device(d)
 for (int j = 0; j < 100; j++){
 a[i][j] = ...
 }
}

#pragma xmp reflect_do (a)

50

Two implementations of XACC

 based on traditional communication library

 for MPI

 directive-base communication on distributed arrays are

automatically performed with OpenACC data I/O and MPI

communication

 based on TCA

 using TCA for direct GPU-memory copy

Mar. 19, 2015 GPU Technology Conference 2015 51

Example of XcalableACC program

double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
#pragma xmp nodes p(x, y)
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1)
#pragma xmp distribute t(block, block) onto p
#pragma xmp align [j][i] with t(i,j) :: u, uu
#pragma xmp shadow uu[1:1][1:1]
…
#pragma acc data copy(u) copyin(uu)
{
 for(k=0; k<MAX_ITER; k++){
#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 uu[x][y] = u[x][y];

#pragma xmp reflect (uu) acc

#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 u[x][y] = (uu[x-1][y]+uu[x+1][y]+
 uu[x][y-1]+uu[x][y+1])/4.0;
 } // end k
} // end data

2-D Laplace Eq.

5

2

double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
#pragma xmp nodes p(x, y)
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1)
#pragma xmp distribute t(block, block) onto p
#pragma xmp align [j][i] with t(i,j) :: u, uu
#pragma xmp shadow uu[1:1][1:1]
…
#pragma acc data copy(u) copyin(uu)
{
 for(k=0; k<MAX_ITER; k++){
#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 uu[x][y] = u[x][y];

#pragma xmp reflect (uu)

#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 u[x][y] = (uu[x-1][y]+uu[x+1][y]+
 uu[x][y-1]+uu[x][y+1])/4.0;
 } // end k
} // end data

array distribution and “sleeve”
declaration

exchange sleeves on array “uu”

2-D Laplace Eq.

Example of XcalableACC program

5

3

double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
#pragma xmp nodes p(x, y)
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1)
#pragma xmp distribute t(block, block) onto p
#pragma xmp align [j][i] with t(i,j) :: u, uu
#pragma xmp shadow uu[1:1][1:1]
…
#pragma acc data copy(u) copyin(uu)
{
 for(k=0; k<MAX_ITER; k++){
#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 uu[x][y] = u[x][y];

#pragma xmp reflect (uu) acc

#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 u[x][y] = (uu[x-1][y]+uu[x+1][y]+
 uu[x][y-1]+uu[x][y+1])/4.0;
 } // end k
} // end data

copy partial (distributed) array to
device memory

distributed array by XMP is
processed according to OpenACC
directive

“acc” clause indicates to
target the array on device
memory

Example of XcalableACC program

2-D Laplace Eq.

array distribution and “sleeve”
declaration

exchange sleeves on array “uu”

5

4

double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
#pragma xmp nodes p(x, y)
#pragma xmp template t(0:YSIZE−1, 0:XSIZE−1)
#pragma xmp distribute t(block, block) onto p
#pragma xmp align [j][i] with t(i,j) :: u, uu
#pragma xmp shadow uu[1:1][1:1]
…
#pragma acc data copy(u) copyin(uu)
{
 for(k=0; k<MAX_ITER; k++){
#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 uu[x][y] = u[x][y];

#pragma xmp reflect (uu) acc

#pragma xmp loop (y,x) on t(y,x)
#pragma acc parallel loop collapse(2)
 for(x=1; x<XSIZE-1; x++)
 for(y=1; y<YSIZE-1; y++)
 u[x][y] = (uu[x-1][y]+uu[x+1][y]+
 uu[x][y-1]+uu[x][y+1])/4.0;
 } // end k
} // end data

Example of XcalableACC program

copy partial (distributed) array to
device memory

distributed array by XMP is
processed according to OpenACC
directive

2-D Laplace Eq.

5

5

Performance on Himeno Benchmark by XcalableACC

2-D stencil computing for fluid dynamics

0

80

160

240

320

1 2 4 8 16

XACC (TCA)
OpenACC+MPI (GDR)

Number of Nodes

P
e
rf

o
rm

a
n
ce

 (
G

F
lo

p
s)

size M (128x128x256)

0

160

320

480

640

1 2 4 8 16

XACC (TCA)
OpenACC+MPI (GDR)

size L (256x256x512)

Number of Nodes

max x2.7↑

For size L, size of sleeve area is approximately 520KB, so TCA’s advantage is small compared to

MVAPICH2-GDR.

Additionally, TCA requires a barrier synch. after DMA transfer to cause additional overhead

better

5

6

Summary

 TCA is a basic research on the possibility on direct network
between accelerators (GPUs) on current available technology

 Toward strong-scaling on post-peta to exascale HPC research, such
a direct network for accelerators is essential

 Language/Programming is also very important issue for high
productivity over multiple programming paradigms

 XcalableACC + TCA is a solution

 Awarded in HPC Challenge Class2 Best Performance Award at
SC14

Mar. 19, 2015 GPU Technology Conference 2015 57

References

 [AsHES2015] Kazuya Matsumoto, Toshihiro Hanawa, Yuetsu
Kodama, Hisafumi Fujii, Taisuke Boku, ” Implementation of CG
Method on GPU Cluster with Proprietary Interconnect TCA for GPU
Direct Communication,” The Internatonal Workshop on
Accelerators and Hybrid Exascale Systems (AsHES2015) , May
2015 (To appear)

 [CANDAR2014] Takuya Kuhara, Takahiro Kaneda, Toshihiro
Hanawa, Yuetsu Kodama, Taisuke Boku, and Hideharu Amano, “A
preliminarily evaluation of PEACH3: a switching hub for tightly
coupled accelerators,” 2nd International Workshop on Computer
Systems and Architectures (CSA‘14), in conjunction with the 2nd
International Symposium on Computing and Networking (CANDAR
2014), pp. 377 - 381, Dec. 2014.

 [WACCPD2014] Masahiro Nakao, Hitoshi Murai, Takenori
Shimosaka, Akihiro Tabuchi, Toshihiro Hanawa, Yuetsu Kodama,
Taisuke Boku, Mitsuhisa Sato, "XcalableACC: Extension of
XcalableMP PGAS Language using OpenACC for Accelerator
Clusters," Workshop on accelerator programming using directives
(WACCPD 2014), in conjunction with SC14, pp. 27-36, Nov. 2014

 [HeteroPar2014] Norihisa Fujita, Hisafumi Fujii, Toshihiro Hanawa,
Yuetsu Kodama, Taisuke Boku, Yoshinobu Kuramashi, and Mike
Clark, "QCD Library for GPU Cluster with Proprietary Interconnect
for GPU Direct Communication," 12th International Workshop
Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Platforms (HeteroPar2014), LNCS 8805, pp. 251-
262, Aug. 2014.

 [HEART2014] Yuetsu Kodama, Toshihiro Hanawa, Taisuke Boku
and Mitsuhisa Sato, "PEACH2: FPGA based PCIe network device for
Tightly Coupled Accelerators," Fifth International Symposium on
Highly-Efficient Accelerators and Reconfigurable Technologies
(HEART2014), pp. 3-8, Jun. 2014

 [HOTI2013] Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, and
Mitsuhisa Sato, "Interconnect for Tightly Coupled Accelerators
Architecture," IEEE 21st Annual Sympsium on High-Performance
Interconnects (HOT Interconnects 21), short paper, pp. 79-82, Aug.
2013

 [AsHES2013] Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku,
and Mitsuhisa Sato, "Tightly Coupled Accelerators Architecture for
Minimizing Communication Latency among Accelerators," The Third
International Workshop on Accelerators and Hybrid Exascale
Systems (AsHES2013), pp. 1030-1039, May 2013.

Mar. 19, 2015 GPU Technology Conference 2015 58

http://dx.doi.org/10.1109/CANDAR.2014.44
http://dx.doi.org/10.1109/CANDAR.2014.44
http://dx.doi.org/10.1109/CANDAR.2014.44
http://dx.doi.org/10.1109/CANDAR.2014.44
http://dx.doi.org/10.1109/CANDAR.2014.44
http://doi.ieeecomputersociety.org/10.1109/WACCPD.2014.6
http://doi.ieeecomputersociety.org/10.1109/HOTI.2013.15

 Contact to:

 Toshihiro Hanawa

hanawa@cc.u-tokyo.ac.jp

 Taisuke Boku

taisuke@cs.tsukuba.ac.jp

Mar. 19, 2015 GPU Technology Conference 2015 59

