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Conclusion 

1. Wrap malloc/cudaMalloc with your own allocator 

Non-Blockin, 
High Performance 

Sub-Allocation 

Host/Device Data 
Management 

Leak Detection, 
Debugging & 

Profiling 



Conclusion 

2. There are three types of memory allocation 

For allocations spanning multiple program iterations 
 main data storage 
 C++ objects & configuration data 

Persistent,  
Long-Lived 
Storage 

For data which does not persist outside of one iteration 
 per-iteration derived quantities 
 operation working space, double buffers, etc. 

Working Space, 
Lifetime Of 
Single Iteration 

For transient allocations with single-procedure lifetime 
 local queues, stacks & objects 
 function-scope working space 

Temporary, 
Local Allocation 



Take Control Of Memory Allocation 



Take Control Of Memory Allocation 

Define your own 
allocate/free functions 

Overload new & delete 
for all classes  

Never call native malloc() 
or free() 

Debug & Leak 
Detection 

Non-Blocking 
Allocation 

Lightweight 
Allocators 

Host/Device 
Management 



It’s Easy! 

// Please don’t name these “malloc” & “free” 
void *hostAlloc(size_t len) { 
    return malloc(len); 
} 
 
void freeMem(void *ptr) { 
    free(ptr); 
} 

// Every class should be “public AllocBase” 
class AllocBase { 
public: 
    void *operator new(size_t len) { 
        return hostAlloc(len); 
    } 
 
    void operator delete(void *ptr) { 
        freeMem(ptr); 
    } 
}; 

C malloc() & free() C++ new & delete 



Also Control Device Allocation 

// Please don’t name these “malloc” & “free” 
void *hostAlloc(size_t len) { 
    return malloc(len); 
} 
 
void freeMem(void *ptr) { 
    free(ptr); 
} 
 
void *deviceAlloc(size_t len) { 
    void *ptr; 
    cudaMalloc(&ptr, len); 
    return ptr; 
} 
 

// Every class should be “public AllocBase” 
class AllocBase { 
public: 
    void *operator new(size_t len) { 
        return hostAlloc(len); 
    } 
 
    void operator delete(void *ptr) { 
        freeMem(ptr); 
    } 
}; 

C malloc() & free() C++ new & delete 



Allocation Tracking, Leak Detection & 
Profiling 



Memory Leak Detection 
Track each allocation with unique identifier 

 Allocate extra space for tracking ID 

 Store ID in front of allocation 

 Record IDs assigned & released 

requested space ID char *ptr = (char *)hostAlloc(1000); 

1008 bytes 

1000 bytes 

allocation 
counter 

Return offset address actual allocation start 

Allocation  
ID 

Record 



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Allocate 

Memory Leak Detection 



Memory Leak Detection 

0 

1 

3 

4 

5 

8 

9 

Free 

2 

6 

7 



Memory Leak Detection 

2 

6 

7 

Identify Memory Leaks 



Memory Leak Detection 

// Use a C++11 atomic to count up allocation ownership 
static std::atomic<long long>alloc_id = 0; 
static std::vector<long long>allocationList; 
 
void *hostAlloc(size_t len) { 
    long long id = alloc_id++;    // Count up allocation ID 
    allocationList[id] = 1;       // Record ID as “allocated” 
 
    // Store allocation ID in front of returned memory 
    void *ptr = malloc(len + 8);  
    *(int *)ptr = id; 
    return (char *)ptr + 8; 
} 
 
void freeMem(void *ptr) { 
    // Extract allocation ID from front of allocation 
    id = *(long long *)((char *)ptr – 8); 
    allocationList[id] = 0;       // Record ID as “released” 
    free((char *)ptr - 8); 
} 



Displaying Unreleased Allocations 

 

For global-scope objects: 
 Constructor called before main() 

 Destructor called after main() exits 

 

WARNING 
 Order of static object construction 

& destruction is undefined 

 Tracking objects should not 
interact 

class TrackingObject { 
public: 
    // Set up initial data in constructor 
    TrackingObject() { 
        InitTrackingData(); 
    } 
 
    // Analyse tracking data in destructor 
    virtual ~TrackingObject() { 
        ProcessTrackingData(); 
    } 
 
    virtual void InitTrackingData() {} 
    virtual void ProcessTrackingData() {} 
}; 
 
// Create global-scope static object. Destructor 
// is called automatically when program exits. 
static TrackingObject dataTracker; 



Displaying Unreleased Allocations 

// Walks the allocation list looking for unallocated data 
class AllocationTracker : public TrackingObject { 
public: 
    void ProcessTrackingData() { 
        for( long long i=0; i<alloc_id; i++ ) { 
            if( allocationList[i] != 0 ) { 
                printf(“Allocation %d not freed\n”, i); 
            } 
        } 
    } 
} 
 
// Creates a tracker which will be called on program shutdown 
static AllocationTracker __allocationTracker; 



Complete Leak Tracking Code 

// Auto display of memory leaks 
static std::atomic<long long>alloc_id = 0; 
static std::vector<long long>allocationList; 
 
class AllocationTracker { 
public: 
   void ~AllocationTracker() { 
      for( long long i=0; i<alloc_id; i++ ) { 
          if( allocationList[i] != 0 ) { 
             printf(“Allocation %d not freed\n”, i); 
          } 
      } 
   } 
} 
static AllocationTracker __allocationTracker; 
 
 

    // Allocator with leak tracking 
    void *hostAlloc(size_t len) { 
        long long id = alloc_id++; 
        allocationList[id] = 1; 
 
        void *ptr = malloc(len + 8);  
        *ptr = id; 
        return (char *)ptr + 8; 
    } 
 
    void freeMem(void *ptr) { 
        id = *(long long *)((char *)ptr – 8); 
        allocationList[id] = 0; 
        free((char *)ptr - 8); 
    } 
 
 



Host / Device Data Management 



Managing Data Movement 

Minimise Code Impact 
 Use managed memory 
 C++ operator & casting shenanigans 
 Focus on memory layout 

Large Separate  
GPU & CPU 
Code Sections 

Explicit Locality Control 
 Streams & copy/compute overlap 
 Carefully managed memory 

 

Interleaved 
CPU & GPU 
Execution 

No One-Size-Fits-All 
 Fine-grained memory regions 
 Signaling between host & device 
 Consider zero-copy memory 

Concurrent 
CPU & GPU 
Execution 



Always Use Streams 



Always Use Streams 

Whenever you launch a kernel 

Whenever you copy data 

Whenever you synchronize 



Streams & Copy/Compute Overlap 

Copy 
Up 

Copy 
Back 

Tesla & Quadro GPUs support bi-directional copying 
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Streams & Copy/Compute Overlap 

CPU GPU 

Three Simultaneous Operations 
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Overlapping Copy & Compute 

copy 

compute 

copy 

time 
start finish 



Overlapping Copy & Compute 

time 
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Compute/Copy Overlap, in Code 
// Convert cats to dogs in “N” chunks 
void catsToDogs(char *cat, char *dog, int width, int height, int N) { 
    // Loop copy+compute+copy for each chunk 
    for( int h=0; h<height; h+=(height/N) ) { 
        // Create a stream for this iteration 
        cudaStream_t s; 
        cudaStreamCreate( &s ); 
 
        // Allocate device data for this chunk 
        char *deviceData; 
        cudaMalloc( &deviceData, width * (height/N) ); 
 
        // Copy up then convert then copy back, in our stream 
        cudaMemcpyAsync( deviceData, cat+h*width, ...hostToDevice, s ); 
        convert<<< width, height/N, 0, s >>>( deviceData ); 
        cudaMemcpyAsync( dog+h*width, deviceData, ...deviceToHost, s ); 
 
        // Free up this iteration’s resources 
        cudaStreamDestroy( s ); 
        cudaFree( deviceData ); 
    } 
} 



Managed Memory 

Very convenient for minimising code impact 
 Can access same pointer from CPU & GPU, directly 

 Data moves automatically 

 Allows full-bandwidth access from GPU 

 Tricky to use because of concurrency constraints (see next slides) 

  int *data; 
  cudaMallocManaged( &data, 10000000 ); 
 
  data[100] = 1234;             // Access on CPU first  
  launch<<< 1, 1 >>>( data );   // Access on GPU second 



Drawback Of Managed Memory 

CPU cannot touch managed memory while the GPU is active 
 “active” means any launch or copy since last synchronize() 

  int *data; 
  cudaMallocManaged( &data, 10000000 ); 
 
  launch<<< 1, 1 >>>( data );   // Access on GPU first 
  data[100] = 1234;             // CPU access fails 
                                // because GPU is busy 



Drawback Of Managed Memory 

CPU cannot touch managed memory while the GPU is active 
 “active” means any launch or copy since last synchronize() 

 Even if the GPU kernel is not actually using the data 

  int *data; 
  cudaMallocManaged( &data, 10000000 ); 
 
  launch<<< 1, 1 >>>();       // GPU does not touch data 
  data[100] = 1234;           // CPU access still fails 
                              // because GPU is busy! 



“Attaching” Managed Memory 

“Attach” reduces constraint to ’while a specific stream is active’ 
 Allows CPU to touch some data while GPU is busy with other data 

  // Assume streams “s1” & “s2” exist 
  int *data; 
  cudaMallocManaged( &data, 10000000 ); 
 
  // Associate “data” with stream s1 
  cudaStreamAttachMemAsync( s1, data ); 
 
  // Launch GPU work on stream s2 
  launch<<< 1, 1, 0, s2 >>>();   
  data[100] = 1234;             // Access on CPU succeeds 



Managed Memory Attach Tricks 

Trick: You can attach just a part of an allocation 
 Allows heterogeneous access to different parts of the same allocation 

 
  // Assume streams “s1” & “s2” exist 
  int *data; 
  cudaMallocManaged( &data, 65536); 
 
  // Associate half of “data” with stream s1 
  // and half with stream s2 
  cudaStreamAttachMemAsync( s1, data, 32768 );  
  cudaStreamAttachMemAsync( s2, data+32768, 32768 ); 
 
  // Launch on stream s2 is fine, but you are 
  // responsible for not touching top half of data 
  launch<<< 1, 1, 0, s2 >>>( data ); 
  data[100] = 1234;      // Access on CPU succeeds 

Attached 
to stream 

s2 

Attached 
to stream 

s1 

Single 
managed 
allocation 

Device access 
here 

Host access 
here 



Managed Memory Attach Tricks 

Dirty Trick: Attach memory not used by a kernel to the CPU 
 You can tell CUDA that you know best, and CPU-access is safe 

 Must re-attach to a stream to use it on the device 

 WARNING: Memory will not be shared with GPU while host-attached 

  // Assume stream s1 exists 
  int *data; 
  cudaMallocManaged( &data, 10000000 ); 
 
  // Associate data with the CPU  
  cudaStreamAttachMemAsync( s1, data, 0, cudaMemAttachHost ); 
 
  // Launch GPU work that doesn’t use “data” 
  launch<<< 1, 1, 0, s1 >>>();   
  data[100] = 1234;             // Access on CPU succeeds 



Owning GPU Memory Allocation 



CUDA Memory Allocation Issues 

 

GPU memory allocation can and does synchronize all streams 



cudaMalloc() Behaviour Varies Widely 

Repeated allocation of fixed size 
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cudaMalloc() Behaviour Varies Widely 

Repeated allocation of fixed size 



cudaMalloc() Behaviour Varies Widely 

Repeated allocations of increasing size 



cudaMalloc() Behaviour Varies Widely 

Repeated allocations of increasing size 



cudaMalloc() Behaviour Varies Widely 

Mixed allocation & free, increasing size 



cudaMalloc() Behaviour Varies Widely 

Time variation when allocating small blocks of data 



cudaMalloc() Behaviour Varies Widely 

Time variation when allocating larger blocks of data 



Roll-Your-Own Allocators 



Sub-Allocators 

1. Pre-allocate a one or more large chunks of memory 

Pre-allocated 
large chunk 

Entire 
GPU 

memory 



Sub-Allocators 

1. Pre-allocate a one or more large chunks of memory 

2. Allocation requests then carve out pieces without having to 
touch the hardware 

Pre-allocated 
large chunk Suballocation 

Entire 
GPU 

memory 



Heap Allocators 
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Heap Allocators 
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Heap Allocators 

 New allocation must find next and/or best-fit free space in memory 

 Free releases block in-place (fragmentation) 

 Complex; countless approaches: SLAB, SLUB, red-black trees, etc. 

Memory 

Allocation may go anywhere in memory 

New 
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Ring-Buffer Allocators 
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Ring-Buffer Allocators 
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Ring-Buffer Allocators 

 New allocations always adds to head of buffer 

 Free only permitted from tail – (out-of-order free = fragmentation) 

 Fast, fairly simple, but long-lived allocations will block allocator 
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Ring-Buffer Allocators 
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Ring-Buffer Allocators 

 New allocations always adds to head of buffer 

 Free only permitted from tail – (out-of-order free = fragmentation) 
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Ring-Buffer Allocators 

 New allocations always adds to head of buffer 

 Free only permitted from tail – (out-of-order free = fragmentation) 

 Fast, fairly simple, but long-lived allocations will block allocator 
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Ring-Buffer Allocators 

 New allocations always adds to head of buffer - wraps around at end 

 Free only permitted from tail – (out-of-order free = fragmentation) 

 Fast, fairly simple, but long-lived allocations will block allocator 

Memory 

tail head 



Stack Allocators 
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Stack Allocators 
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Stack Allocators 

 New allocations always grows top of stack 

 Free always shrinks top of stack – no fragmentation 

 Very fast & simple, but requires free in reverse allocation order 

Memory 
New 

Allocation 

Top of stack 

Free down from stack top 



Sub-Allocator Goals 

1. Fast, consistent allocation time 

 

2. Non-blocking (i.e. no implicit synchronization) 

 

3. Efficient – low fragmentation 

 

4. Simple & parallelizable 



Using The Right Tool For The Job 

 
 

Heap 
Allocators 

 
 Memory efficient 
 Slow & serial 
 Wide size range 

Persistent, 

long-lived storage 

 
 

Ring Buffer 
Allocators 

 
 Perf > Efficiency 
 Fast & parallel 
 Fixed block sizes 

Iteration-lifetime 

working space 

 
 

Stack 
Allocators 

 
 Memory efficient 
 Very fast & parallel 
 Small blocks only 

Temporary, 

local allocations 



Implementing Custom Allocators 

When allocating memory, record the size so you can free it 

 

 

 

 

 

 

Also: Pay attention to alignment of returned pointer 
8 bytes on CPU, 256 bytes on GPU 

requested space ID char *ptr = (char *)hostAlloc(1000); 

1000 bytes 

Size 

1016 bytes 



Conclusion 



Wrap new, malloc & cudaMalloc 

High Performance, 
Non-Blocking 

Sub-Allocation 

Host/Device Data 
Management 

Leak Detection, 
Debugging & 

Profiling 

(even if internally you just call malloc/free directly) 



Use The Right Type Of Allocator 

For allocations spanning multiple program iterations 
 main data storage 
 C++ objects & configuration data 

Persistent,  
Long-Lived 
Storage 

For data which does not persist outside of one iteration 
 per-iteration derived quantities 
 operation working space, double buffers, etc. 

Working Space, 
Lifetime Of 
Single Iteration 

For transient allocations with single-procedure lifetime 
 local queues, stacks & objects 
 function-scope working space 

Temporary, 
Local Allocation 

(but just use malloc() for persistent heap storage) 


