
Memory Management
Tips, Tricks & Techniques

Stephen Jones, SpaceX, GTC 2015

Conclusion

1. Wrap malloc/cudaMalloc with your own allocator

Non-Blockin,
High Performance

Sub-Allocation

Host/Device Data
Management

Leak Detection,
Debugging &

Profiling

Conclusion

2. There are three types of memory allocation

For allocations spanning multiple program iterations
 main data storage
 C++ objects & configuration data

Persistent,
Long-Lived
Storage

For data which does not persist outside of one iteration
 per-iteration derived quantities
 operation working space, double buffers, etc.

Working Space,
Lifetime Of
Single Iteration

For transient allocations with single-procedure lifetime
 local queues, stacks & objects
 function-scope working space

Temporary,
Local Allocation

Take Control Of Memory Allocation

Take Control Of Memory Allocation

Define your own
allocate/free functions

Overload new & delete
for all classes

Never call native malloc()
or free()

Debug & Leak
Detection

Non-Blocking
Allocation

Lightweight
Allocators

Host/Device
Management

It’s Easy!

// Please don’t name these “malloc” & “free”
void *hostAlloc(size_t len) {
 return malloc(len);
}

void freeMem(void *ptr) {
 free(ptr);
}

// Every class should be “public AllocBase”
class AllocBase {
public:
 void *operator new(size_t len) {
 return hostAlloc(len);
 }

 void operator delete(void *ptr) {
 freeMem(ptr);
 }
};

C malloc() & free() C++ new & delete

Also Control Device Allocation

// Please don’t name these “malloc” & “free”
void *hostAlloc(size_t len) {
 return malloc(len);
}

void freeMem(void *ptr) {
 free(ptr);
}

void *deviceAlloc(size_t len) {
 void *ptr;
 cudaMalloc(&ptr, len);
 return ptr;
}

// Every class should be “public AllocBase”
class AllocBase {
public:
 void *operator new(size_t len) {
 return hostAlloc(len);
 }

 void operator delete(void *ptr) {
 freeMem(ptr);
 }
};

C malloc() & free() C++ new & delete

Allocation Tracking, Leak Detection &
Profiling

Memory Leak Detection
Track each allocation with unique identifier

 Allocate extra space for tracking ID

 Store ID in front of allocation

 Record IDs assigned & released

requested space ID char *ptr = (char *)hostAlloc(1000);

1008 bytes

1000 bytes

allocation
counter

Return offset address actual allocation start

Allocation
ID

Record

0

1

2

3

4

5

6

7

8

9

Allocate

Memory Leak Detection

Memory Leak Detection

0

1

3

4

5

8

9

Free

2

6

7

Memory Leak Detection

2

6

7

Identify Memory Leaks

Memory Leak Detection

// Use a C++11 atomic to count up allocation ownership
static std::atomic<long long>alloc_id = 0;
static std::vector<long long>allocationList;

void *hostAlloc(size_t len) {
 long long id = alloc_id++; // Count up allocation ID
 allocationList[id] = 1; // Record ID as “allocated”

 // Store allocation ID in front of returned memory
 void *ptr = malloc(len + 8);
 *(int *)ptr = id;
 return (char *)ptr + 8;
}

void freeMem(void *ptr) {
 // Extract allocation ID from front of allocation
 id = *(long long *)((char *)ptr – 8);
 allocationList[id] = 0; // Record ID as “released”
 free((char *)ptr - 8);
}

Displaying Unreleased Allocations

For global-scope objects:
 Constructor called before main()

 Destructor called after main() exits

WARNING
 Order of static object construction

& destruction is undefined

 Tracking objects should not
interact

class TrackingObject {
public:
 // Set up initial data in constructor
 TrackingObject() {
 InitTrackingData();
 }

 // Analyse tracking data in destructor
 virtual ~TrackingObject() {
 ProcessTrackingData();
 }

 virtual void InitTrackingData() {}
 virtual void ProcessTrackingData() {}
};

// Create global-scope static object. Destructor
// is called automatically when program exits.
static TrackingObject dataTracker;

Displaying Unreleased Allocations

// Walks the allocation list looking for unallocated data
class AllocationTracker : public TrackingObject {
public:
 void ProcessTrackingData() {
 for(long long i=0; i<alloc_id; i++) {
 if(allocationList[i] != 0) {
 printf(“Allocation %d not freed\n”, i);
 }
 }
 }
}

// Creates a tracker which will be called on program shutdown
static AllocationTracker __allocationTracker;

Complete Leak Tracking Code

// Auto display of memory leaks
static std::atomic<long long>alloc_id = 0;
static std::vector<long long>allocationList;

class AllocationTracker {
public:
 void ~AllocationTracker() {
 for(long long i=0; i<alloc_id; i++) {
 if(allocationList[i] != 0) {
 printf(“Allocation %d not freed\n”, i);
 }
 }
 }
}
static AllocationTracker __allocationTracker;

 // Allocator with leak tracking
 void *hostAlloc(size_t len) {
 long long id = alloc_id++;
 allocationList[id] = 1;

 void *ptr = malloc(len + 8);
 *ptr = id;
 return (char *)ptr + 8;
 }

 void freeMem(void *ptr) {
 id = *(long long *)((char *)ptr – 8);
 allocationList[id] = 0;
 free((char *)ptr - 8);
 }

Host / Device Data Management

Managing Data Movement

Minimise Code Impact
 Use managed memory
 C++ operator & casting shenanigans
 Focus on memory layout

Large Separate
GPU & CPU
Code Sections

Explicit Locality Control
 Streams & copy/compute overlap
 Carefully managed memory

Interleaved
CPU & GPU
Execution

No One-Size-Fits-All
 Fine-grained memory regions
 Signaling between host & device
 Consider zero-copy memory

Concurrent
CPU & GPU
Execution

Always Use Streams

Always Use Streams

Whenever you launch a kernel

Whenever you copy data

Whenever you synchronize

Streams & Copy/Compute Overlap

Copy
Up

Copy
Back

Tesla & Quadro GPUs support bi-directional copying

Streams & Copy/Compute Overlap

CPU GPU

Streams & Copy/Compute Overlap

CPU GPU

Streams & Copy/Compute Overlap

CPU GPU

Step 1

Streams & Copy/Compute Overlap

CPU GPU

Step 2

Streams & Copy/Compute Overlap

CPU GPU

Step 3

Streams & Copy/Compute Overlap

CPU GPU

Step 4

Streams & Copy/Compute Overlap

CPU GPU

Step 5

Streams & Copy/Compute Overlap

CPU GPU

Step 6

Streams & Copy/Compute Overlap

CPU GPU

Step 7

Streams & Copy/Compute Overlap

CPU GPU

Step 8

Streams & Copy/Compute Overlap

CPU GPU

Step 9

Streams & Copy/Compute Overlap

CPU GPU

Streams & Copy/Compute Overlap

CPU GPU

copy up

Step 1

Streams & Copy/Compute Overlap

CPU GPU

copy up

compute

Step 2

Streams & Copy/Compute Overlap

CPU GPU

copy up

copy back

compute

Step 3

Streams & Copy/Compute Overlap

CPU GPU

compute

copy back

Step 4

Streams & Copy/Compute Overlap

CPU GPU

copy back

Step 5

Streams & Copy/Compute Overlap

CPU GPU

Three Simultaneous Operations

1

2

3
copy up

copy back

compute

Overlapping Copy & Compute

copy

compute

copy

time
start finish

Overlapping Copy & Compute

time
start finish non-overlapped

finish

time saved

In More Detail...
copy up

St
re

am
 3

St

re
am

 1

compute

copy back

St
re

am
 2

time
start finish

Compute/Copy Overlap, in Code
// Convert cats to dogs in “N” chunks
void catsToDogs(char *cat, char *dog, int width, int height, int N) {
 // Loop copy+compute+copy for each chunk
 for(int h=0; h<height; h+=(height/N)) {
 // Create a stream for this iteration
 cudaStream_t s;
 cudaStreamCreate(&s);

 // Allocate device data for this chunk
 char *deviceData;
 cudaMalloc(&deviceData, width * (height/N));

 // Copy up then convert then copy back, in our stream
 cudaMemcpyAsync(deviceData, cat+h*width, ...hostToDevice, s);
 convert<<< width, height/N, 0, s >>>(deviceData);
 cudaMemcpyAsync(dog+h*width, deviceData, ...deviceToHost, s);

 // Free up this iteration’s resources
 cudaStreamDestroy(s);
 cudaFree(deviceData);
 }
}

Managed Memory

Very convenient for minimising code impact
 Can access same pointer from CPU & GPU, directly

 Data moves automatically

 Allows full-bandwidth access from GPU

 Tricky to use because of concurrency constraints (see next slides)

 int *data;
 cudaMallocManaged(&data, 10000000);

 data[100] = 1234; // Access on CPU first
 launch<<< 1, 1 >>>(data); // Access on GPU second

Drawback Of Managed Memory

CPU cannot touch managed memory while the GPU is active
 “active” means any launch or copy since last synchronize()

 int *data;
 cudaMallocManaged(&data, 10000000);

 launch<<< 1, 1 >>>(data); // Access on GPU first
 data[100] = 1234; // CPU access fails
 // because GPU is busy

Drawback Of Managed Memory

CPU cannot touch managed memory while the GPU is active
 “active” means any launch or copy since last synchronize()

 Even if the GPU kernel is not actually using the data

 int *data;
 cudaMallocManaged(&data, 10000000);

 launch<<< 1, 1 >>>(); // GPU does not touch data
 data[100] = 1234; // CPU access still fails
 // because GPU is busy!

“Attaching” Managed Memory

“Attach” reduces constraint to ’while a specific stream is active’
 Allows CPU to touch some data while GPU is busy with other data

 // Assume streams “s1” & “s2” exist
 int *data;
 cudaMallocManaged(&data, 10000000);

 // Associate “data” with stream s1
 cudaStreamAttachMemAsync(s1, data);

 // Launch GPU work on stream s2
 launch<<< 1, 1, 0, s2 >>>();
 data[100] = 1234; // Access on CPU succeeds

Managed Memory Attach Tricks

Trick: You can attach just a part of an allocation
 Allows heterogeneous access to different parts of the same allocation

 // Assume streams “s1” & “s2” exist
 int *data;
 cudaMallocManaged(&data, 65536);

 // Associate half of “data” with stream s1
 // and half with stream s2
 cudaStreamAttachMemAsync(s1, data, 32768);
 cudaStreamAttachMemAsync(s2, data+32768, 32768);

 // Launch on stream s2 is fine, but you are
 // responsible for not touching top half of data
 launch<<< 1, 1, 0, s2 >>>(data);
 data[100] = 1234; // Access on CPU succeeds

Attached
to stream

s2

Attached
to stream

s1

Single
managed
allocation

Device access
here

Host access
here

Managed Memory Attach Tricks

Dirty Trick: Attach memory not used by a kernel to the CPU
 You can tell CUDA that you know best, and CPU-access is safe

 Must re-attach to a stream to use it on the device

 WARNING: Memory will not be shared with GPU while host-attached

 // Assume stream s1 exists
 int *data;
 cudaMallocManaged(&data, 10000000);

 // Associate data with the CPU
 cudaStreamAttachMemAsync(s1, data, 0, cudaMemAttachHost);

 // Launch GPU work that doesn’t use “data”
 launch<<< 1, 1, 0, s1 >>>();
 data[100] = 1234; // Access on CPU succeeds

Owning GPU Memory Allocation

CUDA Memory Allocation Issues

GPU memory allocation can and does synchronize all streams

cudaMalloc() Behaviour Varies Widely

Repeated allocation of fixed size

cudaMalloc() Behaviour Varies Widely

Repeated allocation of fixed size

cudaMalloc() Behaviour Varies Widely

Repeated allocation of fixed size

cudaMalloc() Behaviour Varies Widely

Repeated allocations of increasing size

cudaMalloc() Behaviour Varies Widely

Repeated allocations of increasing size

cudaMalloc() Behaviour Varies Widely

Mixed allocation & free, increasing size

cudaMalloc() Behaviour Varies Widely

Time variation when allocating small blocks of data

cudaMalloc() Behaviour Varies Widely

Time variation when allocating larger blocks of data

Roll-Your-Own Allocators

Sub-Allocators

1. Pre-allocate a one or more large chunks of memory

Pre-allocated
large chunk

Entire
GPU

memory

Sub-Allocators

1. Pre-allocate a one or more large chunks of memory

2. Allocation requests then carve out pieces without having to
touch the hardware

Pre-allocated
large chunk Suballocation

Entire
GPU

memory

Heap Allocators

Memory

Allocation may go anywhere in memory

New
Allocation

Heap Allocators

New
Allocation

Memory

No fit

Allocation may go anywhere in memory

Heap Allocators

New
Allocation

Memory

No fit

Allocation may go anywhere in memory

Fit Fit

Heap Allocators

 New allocation must find next and/or best-fit free space in memory

 Free releases block in-place (fragmentation)

 Complex; countless approaches: SLAB, SLUB, red-black trees, etc.

Memory

Allocation may go anywhere in memory

New
Allocation

Ring-Buffer Allocators

Memory

New
Allocation

Allocate from head Free from tail

tail head

Ring-Buffer Allocators

Memory

New
Allocation

Allocate from head Free from tail

Always placed
at head

tail head

Ring-Buffer Allocators

 New allocations always adds to head of buffer

 Free only permitted from tail – (out-of-order free = fragmentation)

 Fast, fairly simple, but long-lived allocations will block allocator

Memory

Free from tail

tail head

New
Allocation

Ring-Buffer Allocators

 New allocations always adds to head of buffer

 Free only permitted from tail – (out-of-order free = fragmentation)

 Fast, fairly simple, but long-lived allocations will block allocator

Memory

Free from tail

tail

New
Allocation

head

Ring-Buffer Allocators

 New allocations always adds to head of buffer

 Free only permitted from tail – (out-of-order free = fragmentation)

 Fast, fairly simple, but long-lived allocations will block allocator

Memory

Free from tail

tail

New
Allocation

head

Ring-Buffer Allocators

 New allocations always adds to head of buffer

 Free only permitted from tail – (out-of-order free = fragmentation)

 Fast, fairly simple, but long-lived allocations will block allocator

Memory

tail

New
Allocation

head

Ring-Buffer Allocators

 New allocations always adds to head of buffer - wraps around at end

 Free only permitted from tail – (out-of-order free = fragmentation)

 Fast, fairly simple, but long-lived allocations will block allocator

Memory

tail head

Stack Allocators

Memory

New
Allocation

Allocate up from stack top

Top of stack

Free down from stack top

Stack Allocators

Memory

New
Allocation

Allocate up from stack top

Top of stack

Free down from stack top

Stack Allocators

 New allocations always grows top of stack

 Free always shrinks top of stack – no fragmentation

 Very fast & simple, but requires free in reverse allocation order

Memory
New

Allocation

Top of stack

Free down from stack top

Sub-Allocator Goals

1. Fast, consistent allocation time

2. Non-blocking (i.e. no implicit synchronization)

3. Efficient – low fragmentation

4. Simple & parallelizable

Using The Right Tool For The Job

Heap
Allocators

 Memory efficient
 Slow & serial
 Wide size range

Persistent,

long-lived storage

Ring Buffer
Allocators

 Perf > Efficiency
 Fast & parallel
 Fixed block sizes

Iteration-lifetime

working space

Stack
Allocators

 Memory efficient
 Very fast & parallel
 Small blocks only

Temporary,

local allocations

Implementing Custom Allocators

When allocating memory, record the size so you can free it

Also: Pay attention to alignment of returned pointer
8 bytes on CPU, 256 bytes on GPU

requested space ID char *ptr = (char *)hostAlloc(1000);

1000 bytes

Size

1016 bytes

Conclusion

Wrap new, malloc & cudaMalloc

High Performance,
Non-Blocking

Sub-Allocation

Host/Device Data
Management

Leak Detection,
Debugging &

Profiling

(even if internally you just call malloc/free directly)

Use The Right Type Of Allocator

For allocations spanning multiple program iterations
 main data storage
 C++ objects & configuration data

Persistent,
Long-Lived
Storage

For data which does not persist outside of one iteration
 per-iteration derived quantities
 operation working space, double buffers, etc.

Working Space,
Lifetime Of
Single Iteration

For transient allocations with single-procedure lifetime
 local queues, stacks & objects
 function-scope working space

Temporary,
Local Allocation

(but just use malloc() for persistent heap storage)

