
The Ramses Code for Numerical
Astrophysics: Toward Full GPU Enabling

Claudio Gheller
(ETH Zurich - CSCS)

Giacomo Rosilho de
Souza
(EPF Lausanne)

Marco Sutti
(EPF Lausanne)

Romain Teyssier
(University of Zurich)

•  Numerical simulations represent an extraordinary tool to
study and solve astrophysical problems

•  They are actual virtual laboratories, where numerical
experiments can run

•  Sophisticated codes are used to run the simulations on the

most powerful HPC systems

Simulations in astrophyisics

2

Evolution of the Large Scale Structure of the Universe

V
is

u
al

iz
at

io
n

 m
ad

e
w

it
h

 S
p

lo
tc

h

(h
tt

p
s:

/
/

g
it

h
u

b
.c

om
/

sp
lo

tc
h

vi
z/

sp
lo

tc
h

)

Magneticum Simulation, K.Dolag et al., http://www.magneticum.org

Multi-species/quantities physics

4

V
is

u
al

iz
at

io
n

 m
ad

e
w

it
h

 S
p

lo
tc

h

(h
tt

p
s:

/
/

g
it

h
u

b
.c

om
/

sp
lo

tc
h

vi
z/

sp
lo

tc
h

)

F.Vazza et al, Hamburg Observatory, CSCS, PRACE

Galaxy formation

5 IRIS simulation, L.Mayer et al., University of Zurich, CSCS

Formation of the moon

6
R.Canup et al., https://www.boulder.swri.edu/~robin/

Codes: RAMSES

•  RAMSES (R.Teyssier, A&A, 385, 2002): code to study of
astrophysical problems

•  various components (dark energy, dark matter, baryonic
matter, photons) treated

•  Includes a variety of physical processes (gravity,
magnetohydrodynamics, chemical reactions, star formation,
supernova and AGN feedback, etc.)

•  Adaptive Mesh Refinement adopted to provide high spatial
resolution ONLY where this is strictly necessary

•  Open Source
•  Fortran 90
•  Code size: about 70000 lines
•  MPI parallel (public version)
•  OpenMP support (restricted access)
•  OpenACC under development

HPC power: Piz Daint

8

“Piz Daint” CRAY XC30 system @ CSCS
(N.6 in Top500)
Nodes:
5272 CPUs 8-core Intel SandyBridge equipped with:
•  32 GB DDR3 memory
•  One NVIDIA Tesla K20X GPU with 6 GB of GDDR5 memory

Overall system
•  42176 cores and 5272 GPUs
•  170+32 TB
•  Interconnect: Aries routing and communications ASIC, and

dragonfly network topology
•  Peak performance: 7.787 Petaflops

Scope

Overall goal: Enable the RAMSES code to exploit hybrid,
accelerated architectures

9

Adopted programming model: OpenACC
(http://www.openacc-standard.org/)

Development follows an incremental “bottom-up”
approach

RAMSES: modular physics

AMR build Load
Balance Gravity

Hydro

N-Body

Ti
m

e
lo

op

MHD

Cooling RT More
Physics

DDR-3, 32 GB shared memory DDR-5, 6 GB memory

PCI-E2 8GB/sec

Nvidia Kepler K20X

200 GB/sec
50

GB/sec
1.31 TFlops DP
3.95 Tflops SP
2688 cuda cores
14 SMX
732 MHz/core
235 W à
5.57 GF/W

Interconnect
CRAY Aries
10 GB/sec
peak

Intel Sandybridge Xeon E5-2670
8 cores
2.6 GHz/core
166.4 Gflops DP
115 W à 1.44 GF/W

Processor architecture (Piz Daint)

RAMSES: Modular, incremental GPU implementation

AMR build Load
Balance Gravity

Hydro

N-Body

MPI

Ti
m

e
lo

op
 MHD

MPI

Cooling RT More
Physics

MPI

Low GF

Mid GF

Hi GF

Mid GF Hi GF

GF = “GPU FRIENDLY”
Computational intensity +
Data independency

First steps toward the GPU

AMR build Load
Balance Gravity

Hydro

N-Body

MPI

Ti
m

e
lo

op
 MHD

MPI

Cooling RT More
Physics

MPI

Low GF

Mid GF

Hi GF

Mid GF Hi GF

GF = “GPU FRIENDLY”
Computational intensity +
Data independency

Step 1: solving fluid dynamics

•  Fluid dynamics is one of the key kernels;
•  It is also among the most computational

demanding;
•  It is a local problem;
•  fluid dynamics is solved on a computational

mesh solving three conservation equations:
mass, momentum and energy:

Cell
i,j Flux Flux

Fl
ux

Flux

AMR build

Communication,
Balancing

Gravity

Hydro

N-Body

More physics

Ti
m

e
lo

op

6 R. Teyssier: Cosmological Hydrodynamics with Adaptive Mesh Refinement

whose cloud is entirely included within the level bound-
ary are concerned. For particles belonging to level ℓ, but
whose cloud lies partially outside the level volume, the ac-
celeration is interpolated from the mesh of level ℓ−1. This
is the same for the ART code: “In this way, particles are
driven by the coarse force until they move sufficiently far
into the finer mesh” (Kravtsov et al. 1997).

2.2.5. Time integration

One requirement in a coupled N-body and hydrodynami-
cal code is the possibility to deal with variable time steps.
The stability conditions for the time step is indeed given
by the Courant Friedrich Levy (CFL) condition, which
can vary in time. The standard leapfrog scheme (Hockney
& Eastwood 1981), though accurate, does not offer this
possibility. In RAMSES, a second-order midpoint scheme
has been implemented, which reduces exactly to the sec-
ond order leapfrog scheme for constant time steps. Since
the acceleration −∇φn is known at time tn from particle
positions xn

p , positions and velocities are updated first by
a predictor step

vn+1/2
p = vn

p −∇φn∆tn/2 (5)

xn+1
p = xn

p + vn+1/2
p ∆tn (6)

and then by a corrector step

vn+1
p = vn+1/2

p −∇φn+1∆tn/2 (7)

In this last equation, the acceleration at time tn+1 is
needed. In order to avoid an extra call to the Poisson
solver, this last operation is postponed to the next time
step. The new velocity is computed as soon as the new
potential is obtained. In RAMSES, it is possible to have
either a single time step for all particles, or individual time
steps for each level. In the latter case, when a particle exits
level ℓ with time step ∆tℓ, the corrector step is applied at
level ℓ−1, using ∆tℓ in place of ∆tℓ−1. Therefore, the “past
history” of all particles has to be known in order to apply
correctly the corrector step. This is done in RAMSES by
introducing one extra integer per particle indicating its
current level. This particle “color” is eventually modified
at the end of the corrector step.

Usually, the time step evolution is smooth, making our
integration scheme second-order in time. However, if one
uses the adaptive time step scheme instead of the more ac-
curate (but time consuming) single time step scheme, the
time step changes abruptly by a factor of two for particles
crossing a refinement boundary. Only first order accuracy
is retained along those particle trajectories. This loss of
accuracy has been analyzed in realistic cosmological con-
ditions (Kravtsov & Klypin 1999; Yahagi & Yoshii 2001)
and turns out to have a small effect on the particle distri-
bution, when compared to the single time step case.

2.3. Hydrodynamical Solver

In RAMSES, the Euler equations are solved in their con-
servative form:

∂ρ

∂t
+ ∇ · (ρu) = 0 (8)

∂

∂t
(ρu) + ∇ · (ρu⊗ u) + ∇p = −ρ∇φ (9)

∂

∂t
(ρe) + ∇ · [ρu (e + p/ρ)] = −ρu ·∇φ (10)

where ρ is the mass density, u is the fluid velocity, e is the
specific total energy, and p is the thermal pressure, with

p = (γ − 1)ρ(e −
1

2
u2) (11)

Note that the energy equation (Eq. 10) is conservative
for the total fluid energy, if one ignores the source terms
due to gravity. This property is one of the main advan-
tages of solving the Euler equations in conservative form:
no energy sink due to numerical errors can alter the flow
dynamics. Gravity is included in the system of equation
as a non stiff source term. In this case, the system is not
explicitly conservative and the total energy (potential +
kinetic) is conserved at the percent level (see section 4.3).

Let Un
i denote a numerical approximation to the cell-

averaged value of (ρ, ρu, ρe) at time tn and for cell i. The
numerical discretization of the Euler equations with grav-
itational source terms writes:

Un+1
i − Un

i

∆t
+

Fn+1/2
i+1/2 − Fn+1/2

i−1/2

∆x
= Sn+1/2

i (12)

The time centered fluxes Fn+1/2
i+1/2 across cell interfaces are

computed using a second-order Godunov method (also
known as Pieceweise Linear Method), with or without di-
rectional splitting (according to the user’s choice), while
gravitational source terms are included using a time cen-
tered, fractional step approach:

Sn+1/2
i =

(

0,
ρn

i ∇φn
i + ρn+1

i ∇φn+1
i

2
,
(ρu)n

i ∇φn
i + (ρu)n+1

i ∇φn+1
i

2

)

(13)

A general description of Godunov and fractional step
methods can be found in Toro (1997). The present im-
plementation is based on the work of Collela (1990) and
Saltzman (1994). For sake of brevity, only its basic fea-
tures are recalled here.

2.3.1. Single grid Godunov solver

In this section, I describe the basic hydrodynamical
scheme used in RAMSES to solve equations (8-10) at a
given level. It is assumed that proper boundary conditions
have been provided: the hydrodynamical scheme requires
2 ghost zones in each side and in each direction, even in
the diagonal directions. Since in RAMSES the Euler equa-
tions are solved on octs of 2dim cells each, 3dim− 1 similar
neighboring octs are required to define proper boundary
conditions. The basic stencil of the PLM scheme therefore

The challenge: RAMSES AMR Mesh

Fully Threaded Tree with Cartesian mesh
•  CELL BY CELL refinement
•  COMPLEX data structure
•  IRREGULAR memory distribution

GPU implementation of the Hydro kernel
1.   Memory Bandwidth:

1.  reorganization of memory in spatially (and memory)
contiguous large patches, so that work can be easily split
in blocks with efficient memory access

2.  Further grouping of patches to increase data locality
2.   Parallelism:

1.  patches to blocks assignment,
2.  one cell per thread integration

3.   Data transfer:
1.  Offload data only when and where necessary

4.   GPU memory size:
1.  Still an open issue…

Some Results: hydro only

17

Fraction of time saved
using the GPU

Scalability of the CPU
and GPU versions
(Total time)

Scalability of the CPU and GPU versions (Hydro time)

•  Data movement is still 30-40%
overhead: can be worse with
more complex AMR hierarchies

•  A large fraction of the code is
still on the CPU

•  No overlap of GPU and CPU
computation

We need to extend
the fraction of the
code enabled to the
GPU, reducing data
transfers and
overlapping as much
as possible to the
remaining CPU part

Step 2: Adding the cooling module

•  Energy is corrected only on leaf cells independently
•  GPU implementation requires minimization of data transfer…

•  exploitation of the high
degree of parallelism with

“automatic” load balancing:

•  Iterative procedure with a
cell-by-cell timestep

Adding the cooling

19

•  Comparing 64 GPUs to 64 CPUs:
Speed-up = 2.55

Toward a full GPU enabling

20

•  Gravity is being
moved to the GPU

•  ALL MPI
communication is
being moved to the
GPU using the
GPUDirect MPI
implementation

•  N-body will stay on the CPU
•  Low computational intensity
•  Can easily overlap to the GPU
•  No need of transferring all particle data, saving time but

especially GPU memory

Summary
Objective:
Enable the RAMSES code to the GPU
Methodology
Incremental approach exploiting RAMSES’modular
architecture and OpenACC programming mode
Current achievement:
Hydro and Cooling kernels ported on GPU; MHD kernel
almost done
On-going work:
•  Move all MPI stuff to the GPU
•  Enable gravity to the GPU
•  Data transfer minimization

21

Thanks for your attention

22

