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•  Numerical simulations represent an extraordinary tool to 
study and solve astrophysical problems 

•  They are actual virtual laboratories, where numerical 
experiments can run 

•  Sophisticated codes are used to run the simulations on the 

most powerful HPC systems 

Simulations in astrophyisics 
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Evolution of the Large Scale Structure of the Universe 
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Magneticum Simulation, K.Dolag et al., http://www.magneticum.org 



Multi-species/quantities physics 
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F.Vazza et al, Hamburg Observatory, CSCS, PRACE 



Galaxy formation 

5 IRIS simulation, L.Mayer et al., University of Zurich, CSCS 



Formation of the moon 
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R.Canup et al., https://www.boulder.swri.edu/~robin/ 



Codes: RAMSES 

•  RAMSES (R.Teyssier, A&A, 385, 2002): code to study of 
astrophysical problems 

•  various components (dark energy, dark matter, baryonic 
matter, photons) treated 

•  Includes a variety of physical processes (gravity, 
magnetohydrodynamics, chemical reactions, star formation, 
supernova and AGN feedback, etc.) 

•  Adaptive Mesh Refinement adopted to provide high spatial 
resolution ONLY where this is strictly necessary 

•  Open Source 
•  Fortran 90 
•  Code size: about 70000 lines 
•  MPI parallel (public version)  
•  OpenMP support (restricted access) 
•  OpenACC under development 



HPC power: Piz Daint 
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“Piz Daint” CRAY XC30 system @ CSCS  
(N.6 in Top500) 
Nodes: 
5272 CPUs 8-core Intel SandyBridge equipped with: 
•  32 GB DDR3 memory 
•  One NVIDIA Tesla K20X GPU with 6 GB of GDDR5 memory 
 

Overall system 
•  42176 cores and 5272 GPUs 
•  170+32 TB 
•  Interconnect: Aries routing and communications ASIC, and 

dragonfly network topology 
•  Peak performance: 7.787 Petaflops 



Scope 

Overall goal: Enable the RAMSES code to exploit hybrid, 
accelerated architectures 
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Adopted programming model: OpenACC 
(http://www.openacc-standard.org/) 
 
Development follows an incremental “bottom-up” 
approach 



RAMSES: modular physics 

AMR build Load 
Balance Gravity 

Hydro 

N-Body 
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Cooling RT More 
Physics 



DDR-3, 32 GB shared memory DDR-5, 6 GB memory 

PCI-E2 8GB/sec 

Nvidia Kepler K20X 

200 GB/sec 
50  

GB/sec 
1.31 TFlops DP 
3.95 Tflops SP 
2688 cuda cores 
14 SMX 
732 MHz/core 
235 W à  
5.57 GF/W 

Interconnect 
CRAY Aries 
10 GB/sec  
peak 

Intel Sandybridge Xeon E5-2670 
8 cores 
2.6 GHz/core 
166.4 Gflops DP 
115 W à 1.44 GF/W 

Processor architecture (Piz Daint) 



RAMSES: Modular, incremental GPU implementation 
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First steps toward the GPU 
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Step 1: solving fluid dynamics 

•  Fluid dynamics is one of the key kernels; 
•  It is also among the most computational 

demanding; 
•  It is a local problem; 
•  fluid dynamics is solved on a computational 

mesh solving three conservation equations: 
mass, momentum and energy: 

Cell 
i,j Flux Flux 

Fl
ux
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6 R. Teyssier: Cosmological Hydrodynamics with Adaptive Mesh Refinement

whose cloud is entirely included within the level bound-
ary are concerned. For particles belonging to level ℓ, but
whose cloud lies partially outside the level volume, the ac-
celeration is interpolated from the mesh of level ℓ−1. This
is the same for the ART code: “In this way, particles are
driven by the coarse force until they move sufficiently far
into the finer mesh” (Kravtsov et al. 1997).

2.2.5. Time integration

One requirement in a coupled N-body and hydrodynami-
cal code is the possibility to deal with variable time steps.
The stability conditions for the time step is indeed given
by the Courant Friedrich Levy (CFL) condition, which
can vary in time. The standard leapfrog scheme (Hockney
& Eastwood 1981), though accurate, does not offer this
possibility. In RAMSES, a second-order midpoint scheme
has been implemented, which reduces exactly to the sec-
ond order leapfrog scheme for constant time steps. Since
the acceleration −∇φn is known at time tn from particle
positions xn

p , positions and velocities are updated first by
a predictor step

vn+1/2
p = vn

p −∇φn∆tn/2 (5)

xn+1
p = xn

p + vn+1/2
p ∆tn (6)

and then by a corrector step

vn+1
p = vn+1/2

p −∇φn+1∆tn/2 (7)

In this last equation, the acceleration at time tn+1 is
needed. In order to avoid an extra call to the Poisson
solver, this last operation is postponed to the next time
step. The new velocity is computed as soon as the new
potential is obtained. In RAMSES, it is possible to have
either a single time step for all particles, or individual time
steps for each level. In the latter case, when a particle exits
level ℓ with time step ∆tℓ, the corrector step is applied at
level ℓ−1, using ∆tℓ in place of ∆tℓ−1. Therefore, the “past
history” of all particles has to be known in order to apply
correctly the corrector step. This is done in RAMSES by
introducing one extra integer per particle indicating its
current level. This particle “color” is eventually modified
at the end of the corrector step.

Usually, the time step evolution is smooth, making our
integration scheme second-order in time. However, if one
uses the adaptive time step scheme instead of the more ac-
curate (but time consuming) single time step scheme, the
time step changes abruptly by a factor of two for particles
crossing a refinement boundary. Only first order accuracy
is retained along those particle trajectories. This loss of
accuracy has been analyzed in realistic cosmological con-
ditions (Kravtsov & Klypin 1999; Yahagi & Yoshii 2001)
and turns out to have a small effect on the particle distri-
bution, when compared to the single time step case.

2.3. Hydrodynamical Solver

In RAMSES, the Euler equations are solved in their con-
servative form:

∂ρ

∂t
+ ∇ · (ρu) = 0 (8)

∂

∂t
(ρu) + ∇ · (ρu⊗ u) + ∇p = −ρ∇φ (9)

∂

∂t
(ρe) + ∇ · [ρu (e + p/ρ)] = −ρu ·∇φ (10)

where ρ is the mass density, u is the fluid velocity, e is the
specific total energy, and p is the thermal pressure, with

p = (γ − 1)ρ(e −
1

2
u2) (11)

Note that the energy equation (Eq. 10) is conservative
for the total fluid energy, if one ignores the source terms
due to gravity. This property is one of the main advan-
tages of solving the Euler equations in conservative form:
no energy sink due to numerical errors can alter the flow
dynamics. Gravity is included in the system of equation
as a non stiff source term. In this case, the system is not
explicitly conservative and the total energy (potential +
kinetic) is conserved at the percent level (see section 4.3).

Let Un
i denote a numerical approximation to the cell-

averaged value of (ρ, ρu, ρe) at time tn and for cell i. The
numerical discretization of the Euler equations with grav-
itational source terms writes:

Un+1
i − Un

i

∆t
+

Fn+1/2
i+1/2 − Fn+1/2

i−1/2

∆x
= Sn+1/2

i (12)

The time centered fluxes Fn+1/2
i+1/2 across cell interfaces are

computed using a second-order Godunov method (also
known as Pieceweise Linear Method), with or without di-
rectional splitting (according to the user’s choice), while
gravitational source terms are included using a time cen-
tered, fractional step approach:

Sn+1/2
i =

(

0,
ρn

i ∇φn
i + ρn+1

i ∇φn+1
i

2
,
(ρu)n

i ∇φn
i + (ρu)n+1

i ∇φn+1
i

2

)

(13)

A general description of Godunov and fractional step
methods can be found in Toro (1997). The present im-
plementation is based on the work of Collela (1990) and
Saltzman (1994). For sake of brevity, only its basic fea-
tures are recalled here.

2.3.1. Single grid Godunov solver

In this section, I describe the basic hydrodynamical
scheme used in RAMSES to solve equations (8-10) at a
given level. It is assumed that proper boundary conditions
have been provided: the hydrodynamical scheme requires
2 ghost zones in each side and in each direction, even in
the diagonal directions. Since in RAMSES the Euler equa-
tions are solved on octs of 2dim cells each, 3dim− 1 similar
neighboring octs are required to define proper boundary
conditions. The basic stencil of the PLM scheme therefore



The challenge: RAMSES AMR Mesh 

Fully Threaded Tree with Cartesian mesh  
•  CELL BY CELL refinement  
•           COMPLEX data structure 
•                  IRREGULAR memory distribution 
 
 



GPU implementation of the Hydro kernel 
1.   Memory Bandwidth:  

1.  reorganization of memory in spatially (and memory) 
contiguous large patches, so that work can be easily split 
in blocks with efficient memory access 

2.  Further grouping of patches to increase data locality 
2.   Parallelism:  

1.  patches to blocks assignment, 
2.  one cell per thread integration 

3.   Data transfer:  
1.  Offload data only when and where necessary 

4.   GPU memory size: 
1.  Still an open issue… 



Some Results: hydro only 
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Fraction of time saved 
using the GPU 

Scalability of the CPU 
and GPU versions 
(Total time) 

Scalability of the CPU and GPU versions (Hydro time) 

•  Data movement is still 30-40% 
overhead: can be worse with 
more complex AMR hierarchies 

•  A large fraction of the code is 
still on the CPU  

•  No overlap of GPU and CPU 
computation 

We need to extend 
the fraction of the 
code enabled to the 
GPU, reducing data 
transfers and 
overlapping as much 
as possible to the 
remaining CPU part 



Step 2: Adding the cooling module 

•  Energy is corrected only on leaf cells independently  
•  GPU implementation requires minimization of data transfer…   

•  exploitation of the high 
degree of parallelism with 

“automatic” load balancing: 

•  Iterative procedure with a 
cell-by-cell timestep 



Adding the cooling 
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•  Comparing 64 GPUs to 64 CPUs: 
Speed-up = 2.55 



Toward a full GPU enabling 
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•  Gravity is being 
moved to the GPU 

•  ALL MPI 
communication is 
being moved to the 
GPU using the 
GPUDirect MPI 
implementation 

•  N-body will stay on the CPU 
•  Low computational intensity 
•  Can easily overlap to the GPU 
•  No need of transferring all particle data, saving time  but 

especially GPU memory 



Summary 
Objective: 
Enable the RAMSES code to the GPU 
Methodology 
Incremental approach exploiting RAMSES’modular 
architecture and OpenACC programming mode 
Current achievement: 
Hydro and Cooling kernels ported on GPU; MHD kernel 
almost done 
On-going work: 
•  Move all MPI stuff to the GPU 
•  Enable gravity to the GPU 
•  Data transfer minimization 
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Thanks for your attention 
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