

3D BACKPROJECTION

MEETING THE CHALLENGE FOR PERFORMANCE IN MEDICAL IMAGING

LARS NYLAND

JULIEN DEMOUTH

SKY WU

FEIWEN ZHU

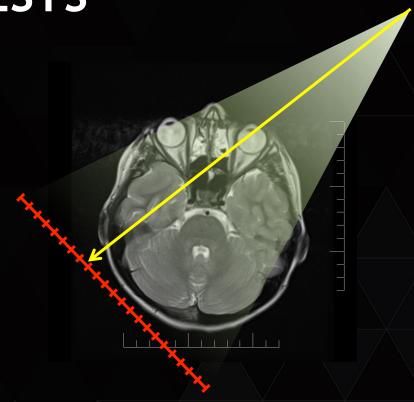
NVIDIA

SUPPORTING APPLICATIONS

- Julien Demouth -- DevTech
 - Understanding customer applications and how they map to NVIDIA hardware
- Lars Nyland, Sky Wu, and Feiwen Zhu -- Compute Architecture Group
 - Study how applications perform on GPUs
 - Propose capabilities and performance enhancements
 - Work with DevTech to improve customers' codes
- Example: Medical Imaging
 - DevTech and Compute Arch spend significant time understanding performance of several codes
- Occasionally enlist help of compiler team

MEDICAL IMAGING INTERESTS

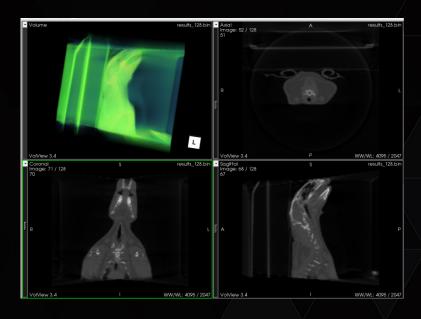
- Goals
 - To see inside the body without cutting it open
- Methods
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI)
 - Ultrasound
- > 2d,/3d
 - Lines over time (2d reconstruction)
 - Images over time (3d reconstruction)



CT RECONSTRUCTION

Sequence of 2d images rotating around patient

Filtered Backprojection



Projected images

Reconstructed 3D volume

FILTERED BACKPROJECTION

Input

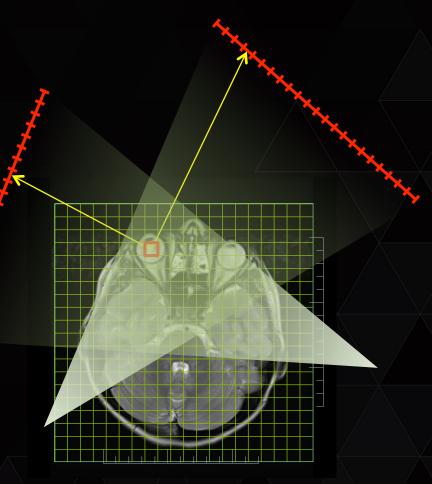
A list of projected images and the corresponding projection matrices

Output

A reconstructed 3D cube

Algorithm

- For each projected image:
 - For each voxel in the 3D cube:
 - Project the center of the voxel on the image
 - Compute the bilinear interpolation of neighboring pixels
 - Add the value to the voxel (with a weight)



RABBITCT BENCHMARK

- Filtered backprojection benchmark: http://www5.cs.fau.de/research/projects/rabbitct/
 - C. Rohkohl et al. RabbitCT---an open platform for benchmarking 3D cone-beam reconstruction algorithms. Med. Phys. 36, 3940 (2009)
- 496 projected images of size 1248x960

OPTIMIZED FILTERED BACKPROJECTION

- We implemented
 - T. Zinsser and B. Keck. Systematic Performance Optimization of Cone-Beam Back-Projection on the Kepler Architecture. Proceedings of the 12th Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2013

Key ideas

- Each kernel launch works on a batch of images
- Each thread works on several voxels (each threads works on 4 x 2 voxels)

Not implemented

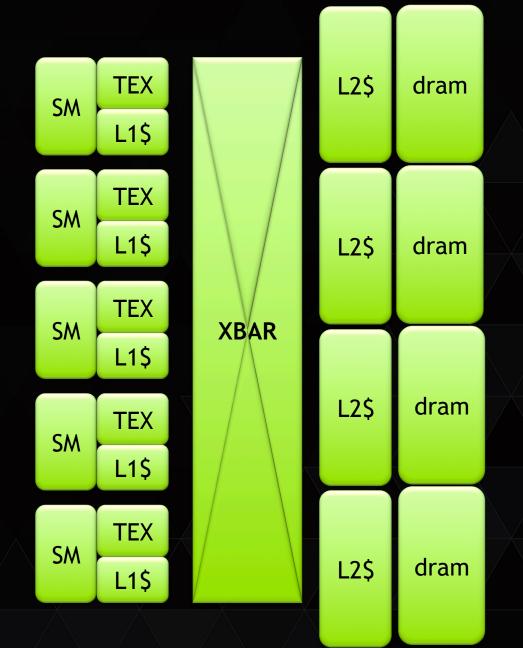
Smart strategy to partially hide the first H2D and last D2H copies

ARCHITECTURE DIGRESSION

- Kepler
 - ▶ 1st architecture to optimize for power
 - 4 texture units/sm
- Maxwell
 - Improve performance/watt
 - 2 texture units/sm
 - Can support more SMs in same power
- Expectations
 - Maxwell's clocks are faster
 - Maxwell GPUs have more SMs
 - ▶ Nearly as many texture units between Tesla K40 and Quadro M6000

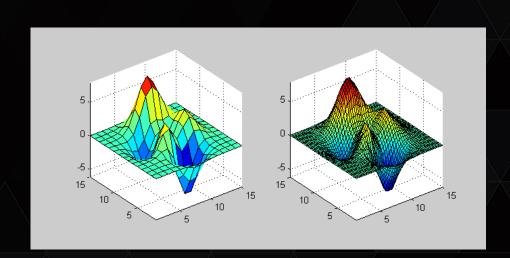
GPU ORGANIZATION

- SM does the bulk of the computation
 - Math, loop control
 - LD/ST memory ops
- Other units can perform computations
 - Texture has interpolation hardware
 - L2\$ has atomic memory units
- You can use them to lighten the load on SM
 - Specialized computations
 - Close to memory values



DEDICATED INTERPOLATION HARDWARE

- GPUs have interpolation hardware in Texture Units
 - Developed for graphics to interpolate texture images
 - Available in Cuda for 1, 2 and 3d interpolation
- ▶ Similar to MATLAB's *interp1*, *interp2*, and *interp3* functions
 - Nearest, linear, and cubic interpolations available
- Interpolation Operation
 - Index array with floats, not integers
 - Example: A[1.3][9.74] -> tex2d(A, 1.3, 9.74)
 - Returns 1-4 values at interpolated location
 - Source data is bytes, half-words, or floats
 - Safe out-of-bounds handling

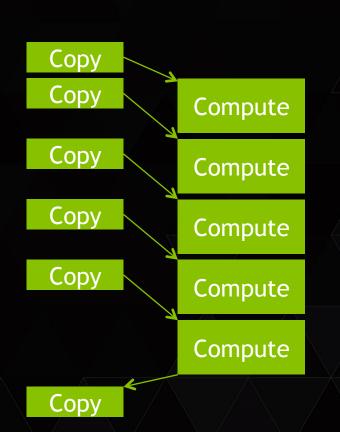


ATOMIC MEMORY OPERATIONS

- Update values in memory with no interference
 - Where "update" means "do some math using memory value as input and output"
- Ex. atomicAdd(&A[i], t);
 - Perform A[i] += t; with no interference
 - If no return value, operation is "fire and forget" (SM does not wait)
 - Otherwise, returns old value of A[i], like a load operation
 - Available types for atomicAdd():
 - ▶ Int32, fp32

BACKPROJECTION CPU-GPU STRATEGY

- Overlap copy and compute
- CPU copies 1st batch of images to GPU
- Launches 1st kernel
- Without waiting, copy next batch of images
- Launch next kernel
- Repeat until done
- Copy final results back to CPU



time

BACKPROJECTION IMPLEMENTATION

Each thread works on 8 voxels (4 in Y dimension, 2 in Z dimension)

```
int x = (blockIdx.x*blockDim.x + threadIdx.x);
int y = (blockIdx.y*blockDim.y + threadIdx.y)*4;
int z = (blockIdx.z)*2;
```

Iterate over the images

```
float p0 = 0.f, p1 = 0.f, p2 = 0.f, p3 = 0.f, ...;
for( int i = 0 ; i < NUM_IMAGES_PER_BATCH ; ++i )
{
    // Project and update the 8 voxels
}
atomicAdd(&dst[(z+0)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p0);
atomicAdd(&dst[(z+1)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p1);
atomicAdd(&dst[(z+2)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p2);
atomicAdd(&dst[(z+3)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p3);</pre>
```


VOXEL PROJECTION IMPLEMENTATION

Homogeneous coordinates for the 8 voxels (only 1st and 2nd shown)

```
float u0 = d_proj[12*i+0]*x + d_proj[12*i+3]*y + d_proj[12*i+6]*z + d_proj[12*i+ 9];
float v0 = d_proj[12*i+1]*x + d_proj[12*i+4]*y + d_proj[12*i+7]*z + d_proj[12*i+10];
float w0 = d_proj[12*i+2]*x + d_proj[12*i+5]*y + d_proj[12*i+8]*z + d_proj[12*i+11];

float u1 = u0 + 1.0f*d_proj[ID][12*i+6]; // 2nd voxel, increase in Z.
float v1 = v0 + 1.0f*d_proj[ID][12*i+7];
float w1 = w0 + 1.0f*d_proj[ID][12*i+8];
```

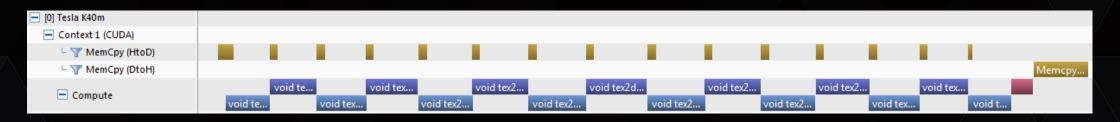
Project and update the voxels in registers (only 1st voxel shown)

```
float inv_w0 = 1.f / w0;
float texu0 = u0*inv_w0 + 0.5f;
float texv0 = v0*inv_w0 + 0.5f;

p0 += tex2DLayered<float>(src, texu0, texv0, i) * (inv_w0*inv_w0);
```


APPLICATION PROFILE

NVIDIA Tesla K40m (CUDA 7.0), cube 512^3, data in fp32



- Limited by kernel performance
 - Reconstructed cube, stored on the device
 - Projected images and matrices, transferred in batches (32 per kernel)
- ► H2D copies at ~12GB/s over PCIE 3.0
 - Hidden behind kernel computation

APPLICATION PERFORMANCE

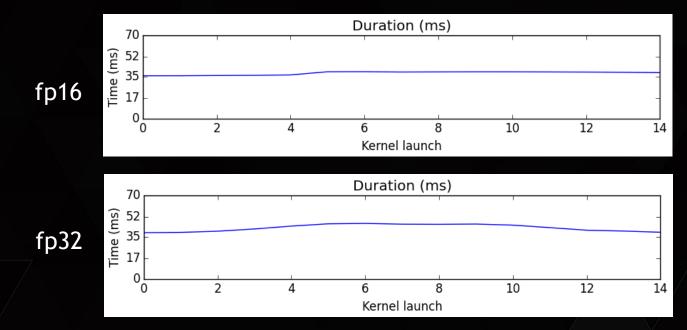
▶ Performance in GUPS (higher is better), input data in fp16 / fp32

Cube	K40m (Kepler)	M6000 (Maxwell)	Limiter
128	10 / 5	10 / 5	H2D/D2H copies
256	63 / 30	73 / 33	Kernels
512	102 / 82	151 / 112	Kernels
1024	108 / 106	155 / 154	Kernels

For 512³, Intel Xeon Phi 5110P reaches 9 GUPS (fp32) [1] (~12x slower than M6000)

PERFORMANCE ON K40

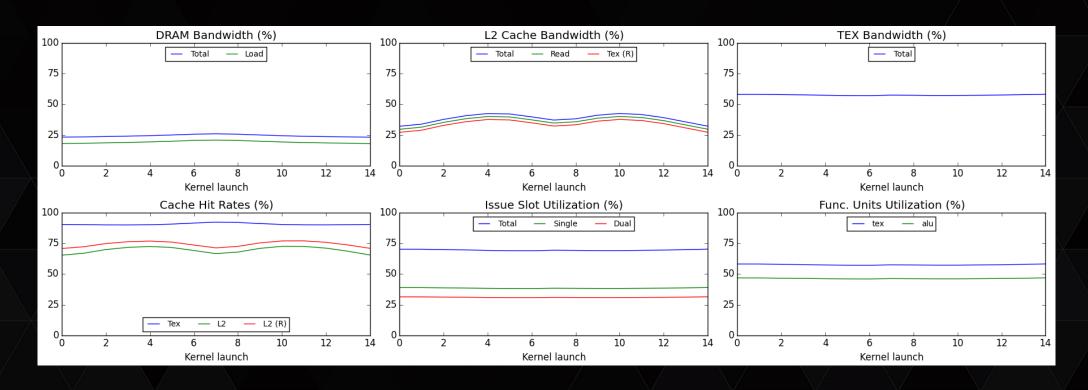
Kernel performance varies during reconstruction



Execution time depends on projection matrix

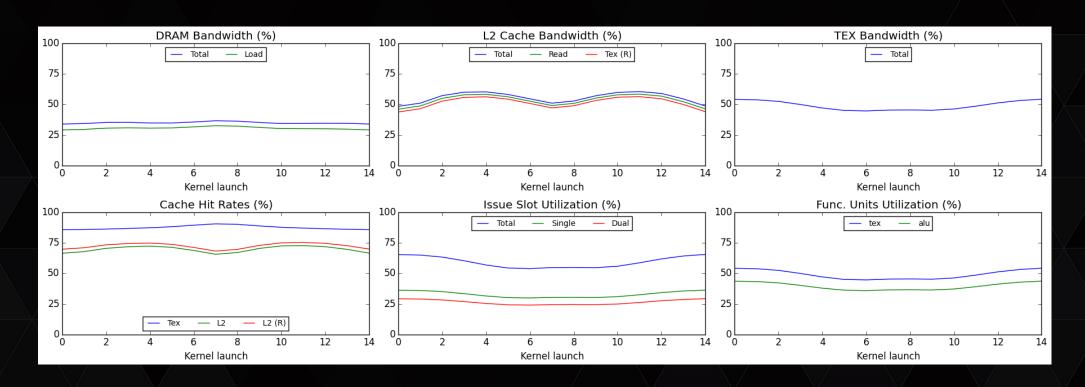
KERNEL METRICS (FP16, K40)

No clear performance limiter. Latency bound.



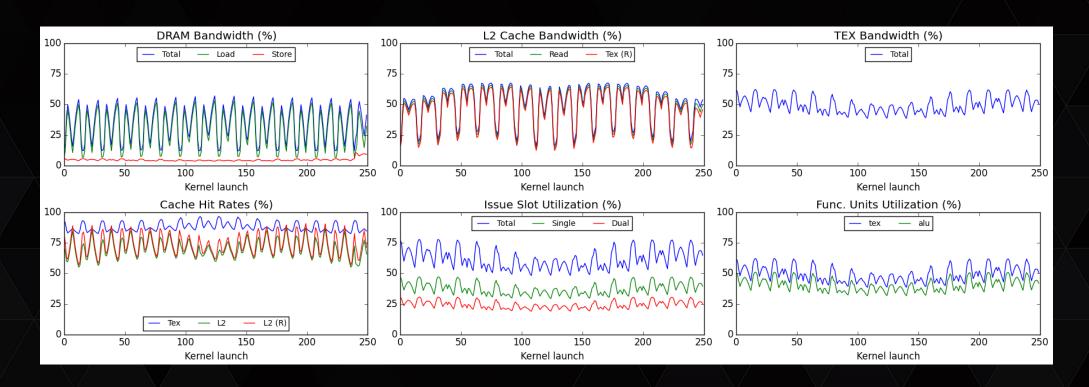
KERNEL METRICS (FP32, K40)

Still no clear performance limiter. Latency bound.



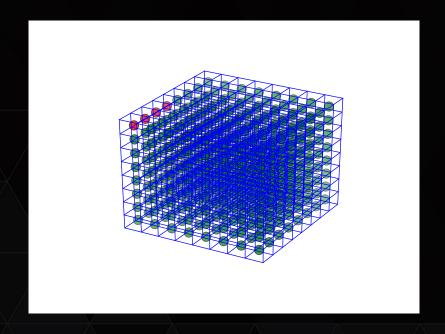
DETAILED PERFORMANCE

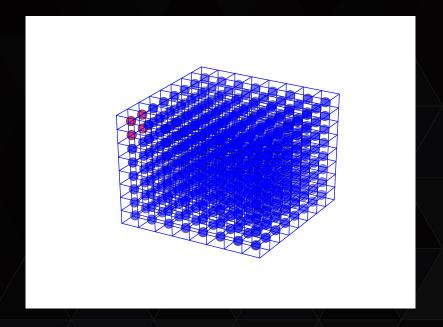
Split the kernel. Each kernel computes 16 slices in the Z dimension



AUTO-TUNING

- Ideas
 - Process different numbers of voxels per thread (2, 4, 8, 16)
 - Distribute the voxels per thread differently: In Y dimension, in Z dimension, in both





AUTO-TUNING

Improved performance

Cube	K40m (with)	K40m (without)
128	10 / 5	10 / 5
256	86 / 46	63 / 30
512	117 / 96	102 / 82

Vary block sizes and vary # of voxels computed per each thread (4 or 8)

PERFORMANCE TECHNIQUE SUMMARY

- Batch data and work
 - Send some data, do some work, repeat and overlap
 - Nearly all data copies hidden behind work
 - Provides scaling to any size problem
- Multiple output voxels per thread
 - Reduces redundant work
 - More efficient use of registers
- Memory accesses exhibit spatial and temporal locality
 - By mapping of voxels to threads and voxels to thread groups
- Use arithmetic hardware outside the SM
 - Texture performs interpolation
 - L2 performs per-voxel sums with atomics

CONCLUSIONS

- Medical Imaging Applications run well on GPUs
- Customer collaboration with NVIDIA
 - Better performance today
 - Better support in the future

NVIDIA REGISTERED DEVELOPER PROGRAMS

- Everything you need to develop with NVIDIA products
- Membership is your first step in establishing a working relationship with NVIDIA Engineering
 - Exclusive access to pre-releases
 - Submit bugs and features requests
 - Stay informed about latest releases and training opportunities
 - Access to exclusive downloads
 - Exclusive activities and special offers
 - Interact with other developers in the NVIDIA Developer Forums

REGISTER FOR FREE AT: developer.nvidia.com

BACKUP: ACHIEVED OCCUPANCY

39 active warps / clock for both fp16 and fp32