
LARS NYLAND 

JULIEN DEMOUTH 

SKY WU 

FEIWEN ZHU 

NVIDIA 

3D BACKPROJECTION 
MEETING THE CHALLENGE FOR PERFORMANCE IN 
MEDICAL IMAGING 



SUPPORTING APPLICATIONS 
  Julien Demouth -- DevTech 

  Understanding customer applications and how they map to NVIDIA hardware 

  Lars Nyland, Sky Wu, and Feiwen Zhu -- Compute Architecture Group 
  Study how applications perform on GPUs 

  Propose capabilities and performance enhancements 

  Work with DevTech to improve customers’ codes 

  Example: Medical Imaging 
DevTech and Compute Arch spend significant time understanding performance of several codes 

  Occasionally enlist help of compiler team 



MEDICAL IMAGING INTERESTS 
  Goals 

  To see inside the body without cutting it open 

  Methods 
  Computed Tomography (CT) 

  Magnetic Resonance Imaging (MRI) 

  Ultrasound 

  2d, 3d 
  Lines over time (2d reconstruction) 

  Images over time (3d reconstruction) 



CT RECONSTRUCTION 
  Sequence of 2d images rotating around patient 

Filtered 
Backprojection 

Reconstructed 3D volume 
Projected images 



FILTERED BACKPROJECTION 
  Input 

  A list of projected images and the corresponding projection 
matrices 

  Output 
  A reconstructed 3D cube  

  Algorithm 
  For each projected image: 

  For each voxel in the 3D cube: 

  Project the center of the voxel on the image 

  Compute the bilinear interpolation of neighboring 
pixels 

  Add the value to the voxel (with a weight) 



RABBITCT BENCHMARK 
  Filtered backprojection benchmark: http://www5.cs.fau.de/research/projects/rabbitct/ 

  C. Rohkohl et al. RabbitCT---an open platform for benchmarking 3D cone-beam reconstruction 
algorithms. Med. Phys. 36, 3940 (2009) 

  496 projected images of size 1248x960 



OPTIMIZED FILTERED BACKPROJECTION 
  We implemented 

  T. Zinsser and B. Keck. Systematic Performance Optimization of Cone-Beam Back-Projection on 
the Kepler Architecture. Proceedings of the 12th Fully Three-Dimensional Image Reconstruction in 
Radiology and Nuclear Medicine, 2013 

  Key ideas 
  Each kernel launch works on a batch of images  
  Each thread works on several voxels (each threads works on 4 x 2 voxels) 

  Not implemented 
  Smart strategy to partially hide the first H2D and last D2H copies 



ARCHITECTURE DIGRESSION 
  Kepler 

  1st architecture to optimize for power 

  4 texture units/sm 

  Maxwell 
  Improve performance/watt 

  2 texture units/sm 

  Can support more SMs in same power 

  Expectations 
  Maxwell’s clocks are faster 

  Maxwell GPUs have more SMs 

  Nearly as many texture units between Tesla K40 and Quadro M6000 



  SM does the bulk of the computation 
  Math, loop control 

  LD/ST memory ops 

  Other units can perform computations 
  Texture has interpolation hardware 

  L2$ has atomic memory units  

  You can use them to lighten the load on SM 
  Specialized computations 

  Close to memory values 
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DEDICATED INTERPOLATION HARDWARE 
  GPUs have interpolation hardware in Texture Units 

  Developed for graphics to interpolate texture images 

  Available in Cuda for 1, 2 and 3d interpolation 

  Similar to MATLAB’s interp1, interp2, and interp3 functions 
  Nearest, linear, and cubic interpolations available 

  Interpolation Operation 
  Index array with floats, not integers 

  Example: A[1.3][9.74] -> tex2d(A, 1.3, 9.74) 

  Returns 1-4 values at interpolated location 

  Source data is bytes, half-words, or floats 

  Safe out-of-bounds handling 



ATOMIC MEMORY OPERATIONS 
  Update values in memory with no interference 

  Where “update” means “do some math using memory value as input and output” 

  Ex. atomicAdd(&A[i], t); 
  Perform A[i] += t; with no interference 

  If no return value, operation is “fire and forget” (SM does not wait) 

  Otherwise, returns old value of A[i], like a load operation 

  Available types for atomicAdd(): 

  Int32, fp32 



BACKPROJECTION CPU-GPU STRATEGY 
  Overlap copy and compute 
  CPU copies 1st batch of images to GPU 

  Launches 1st kernel 
  Without waiting, copy next batch of images 

  Launch next kernel 

  Repeat until done 
  Copy final results back to CPU 
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BACKPROJECTION IMPLEMENTATION 
  Each thread works on 8 voxels (4 in Y dimension, 2 in Z dimension) 

 

  Iterate over the images 

 

int x = (blockIdx.x*blockDim.x + threadIdx.x); 
int y = (blockIdx.y*blockDim.y + threadIdx.y)*4; 
int z = (blockIdx.z)*2; 

float p0 = 0.f, p1 = 0.f, p2 = 0.f, p3 = 0.f, ...;  
for( int i = 0 ; i < NUM_IMAGES_PER_BATCH ; ++i ) 
{ 
  // Project and update the 8 voxels 
} 
atomicAdd(&dst[(z+0)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p0); 
atomicAdd(&dst[(z+1)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p1); 
atomicAdd(&dst[(z+2)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p2); 
atomicAdd(&dst[(z+3)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p3); 
... 



VOXEL PROJECTION IMPLEMENTATION 
  Homogeneous coordinates for the 8 voxels (only 1st and 2nd shown) 

 
  Project and update the voxels in registers (only 1st voxel shown) 

float u0 = d_proj[12*i+0]*x + d_proj[12*i+3]*y + d_proj[12*i+6]*z + d_proj[12*i+ 9]; 
float v0 = d_proj[12*i+1]*x + d_proj[12*i+4]*y + d_proj[12*i+7]*z + d_proj[12*i+10]; 
float w0 = d_proj[12*i+2]*x + d_proj[12*i+5]*y + d_proj[12*i+8]*z + d_proj[12*i+11]; 
 
float u1 = u0 + 1.0f*d_proj[ID][12*i+6]; // 2nd voxel, increase in Z. 
float v1 = v0 + 1.0f*d_proj[ID][12*i+7]; 
float w1 = w0 + 1.0f*d_proj[ID][12*i+8]; 

float inv_w0 = 1.f / w0; 
 
float texu0 = u0*inv_w0 + 0.5f; 
float texv0 = v0*inv_w0 + 0.5f; 
 
p0 += tex2DLayered<float>(src, texu0, texv0, i) * (inv_w0*inv_w0); 



APPLICATION PROFILE 
  NVIDIA Tesla K40m (CUDA 7.0), cube 512^3, data in fp32 

  Limited by kernel performance  
  Reconstructed cube, stored on the device 
  Projected images and matrices, transferred in batches (32 per kernel) 

  H2D copies at ~12GB/s over PCIE 3.0 
  Hidden behind kernel computation 



APPLICATION PERFORMANCE 
  Performance in GUPS (higher is better), input data in fp16 / fp32 

  For 512^3, Intel Xeon Phi 5110P reaches 9 GUPS (fp32) [1] (~12x slower than M6000) 

 

Cube K40m (Kepler) M6000 (Maxwell) Limiter 
128  10 / 5 10 / 5 H2D/D2H copies 

256 63 / 30 73 / 33 Kernels 

512 102 / 82 151 / 112 Kernels 

1024 108 / 106 155 / 154 Kernels 

[1] J. Hofmann et al. Comparing the performance of different x86 SIMD instruction sets for a medical imaging application on modern multi- and 
manycore chips. In Proceedings of the 2014 Workshop on Programming models for SIMD/Vector processing (WPMVP '14). 2014 



PERFORMANCE ON K40 
  Kernel performance varies during reconstruction 

  Execution time depends on projection matrix 

fp16 

fp32 



KERNEL METRICS (FP16, K40) 
  No clear performance limiter. Latency bound. 



KERNEL METRICS (FP32, K40) 
  Still no clear performance limiter. Latency bound. 



DETAILED PERFORMANCE 
  Split the kernel. Each kernel computes 16 slices in the Z dimension 



AUTO-TUNING 
  Ideas 

  Process different numbers of voxels per thread (2, 4, 8, 16) 

  Distribute the voxels per thread differently: In Y dimension, in Z dimension, in both 



AUTO-TUNING 
  Improved performance 

  Vary block sizes and vary # of voxels computed per each thread (4 or 8) 

Cube K40m (with) K40m (without) 

128  10 / 5 10 / 5 

256 86 / 46 63 / 30 

512 117 / 96 102 / 82 



PERFORMANCE TECHNIQUE SUMMARY 
  Batch data and work 

  Send some data, do some work, repeat and overlap 

  Nearly all data copies hidden behind work 

  Provides scaling to any size problem 

  Multiple output voxels per thread 
  Reduces redundant work 

  More efficient use of registers 

  Memory accesses exhibit spatial and temporal locality 
  By mapping of voxels to threads and voxels to thread groups 

  Use arithmetic hardware outside the SM 
  Texture performs interpolation 

  L2 performs per-voxel sums with atomics 



CONCLUSIONS 
  Medical Imaging Applications run well on GPUs 

  Customer collaboration with NVIDIA 
  Better performance today 

  Better support in the future 



NVIDIA REGISTERED DEVELOPER PROGRAMS 
  Everything you need to develop with NVIDIA products 
  Membership is your first step in establishing a working relationship with NVIDIA 
Engineering 

  Exclusive access to pre-releases 
  Submit bugs and features requests  

  Stay informed about latest releases and training opportunities 
  Access to exclusive downloads 

  Exclusive activities and special offers 
  Interact with other developers in the NVIDIA Developer Forums 

 

 

         REGISTER FOR FREE AT: developer.nvidia.com  
 



BACKUP: ACHIEVED OCCUPANCY 
39 active warps / clock for both fp16 and fp32 


