
LARS NYLAND

JULIEN DEMOUTH

SKY WU

FEIWEN ZHU

NVIDIA

3D BACKPROJECTION
MEETING THE CHALLENGE FOR PERFORMANCE IN
MEDICAL IMAGING

SUPPORTING APPLICATIONS
  Julien Demouth -- DevTech

  Understanding customer applications and how they map to NVIDIA hardware

  Lars Nyland, Sky Wu, and Feiwen Zhu -- Compute Architecture Group
  Study how applications perform on GPUs

  Propose capabilities and performance enhancements

  Work with DevTech to improve customers’ codes

  Example: Medical Imaging
DevTech and Compute Arch spend significant time understanding performance of several codes

  Occasionally enlist help of compiler team

MEDICAL IMAGING INTERESTS
  Goals

  To see inside the body without cutting it open

  Methods
  Computed Tomography (CT)

  Magnetic Resonance Imaging (MRI)

  Ultrasound

  2d, 3d
  Lines over time (2d reconstruction)

  Images over time (3d reconstruction)

CT RECONSTRUCTION
  Sequence of 2d images rotating around patient

Filtered
Backprojection

Reconstructed 3D volume
Projected images

FILTERED BACKPROJECTION
  Input

  A list of projected images and the corresponding projection
matrices

  Output
  A reconstructed 3D cube

  Algorithm
  For each projected image:

  For each voxel in the 3D cube:

  Project the center of the voxel on the image

  Compute the bilinear interpolation of neighboring
pixels

  Add the value to the voxel (with a weight)

RABBITCT BENCHMARK
  Filtered backprojection benchmark: http://www5.cs.fau.de/research/projects/rabbitct/

  C. Rohkohl et al. RabbitCT---an open platform for benchmarking 3D cone-beam reconstruction
algorithms. Med. Phys. 36, 3940 (2009)

  496 projected images of size 1248x960

OPTIMIZED FILTERED BACKPROJECTION
  We implemented

  T. Zinsser and B. Keck. Systematic Performance Optimization of Cone-Beam Back-Projection on
the Kepler Architecture. Proceedings of the 12th Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine, 2013

  Key ideas
  Each kernel launch works on a batch of images
  Each thread works on several voxels (each threads works on 4 x 2 voxels)

  Not implemented
  Smart strategy to partially hide the first H2D and last D2H copies

ARCHITECTURE DIGRESSION
  Kepler

  1st architecture to optimize for power

  4 texture units/sm

  Maxwell
  Improve performance/watt

  2 texture units/sm

  Can support more SMs in same power

  Expectations
  Maxwell’s clocks are faster

  Maxwell GPUs have more SMs

  Nearly as many texture units between Tesla K40 and Quadro M6000

  SM does the bulk of the computation
  Math, loop control

  LD/ST memory ops

  Other units can perform computations
  Texture has interpolation hardware

  L2$ has atomic memory units

  You can use them to lighten the load on SM
  Specialized computations

  Close to memory values

XBAR

SM
TEX

L1$

L2$

SM
TEX

L1$

SM
TEX

L1$

SM
TEX

L1$

SM
TEX

L1$

dram

dram

dram

dram

GPU ORGANIZATION

L2$

L2$

L2$

DEDICATED INTERPOLATION HARDWARE
  GPUs have interpolation hardware in Texture Units

  Developed for graphics to interpolate texture images

  Available in Cuda for 1, 2 and 3d interpolation

  Similar to MATLAB’s interp1, interp2, and interp3 functions
  Nearest, linear, and cubic interpolations available

  Interpolation Operation
  Index array with floats, not integers

  Example: A[1.3][9.74] -> tex2d(A, 1.3, 9.74)

  Returns 1-4 values at interpolated location

  Source data is bytes, half-words, or floats

  Safe out-of-bounds handling

ATOMIC MEMORY OPERATIONS
  Update values in memory with no interference

  Where “update” means “do some math using memory value as input and output”

  Ex. atomicAdd(&A[i], t);
  Perform A[i] += t; with no interference

  If no return value, operation is “fire and forget” (SM does not wait)

  Otherwise, returns old value of A[i], like a load operation

  Available types for atomicAdd():

  Int32, fp32

BACKPROJECTION CPU-GPU STRATEGY
  Overlap copy and compute
  CPU copies 1st batch of images to GPU

  Launches 1st kernel
  Without waiting, copy next batch of images

  Launch next kernel

  Repeat until done
  Copy final results back to CPU

Copy

Compute Copy

Compute Copy

Compute Copy

Compute Copy

Compute

Copy

time

BACKPROJECTION IMPLEMENTATION
  Each thread works on 8 voxels (4 in Y dimension, 2 in Z dimension)

  Iterate over the images

int x = (blockIdx.x*blockDim.x + threadIdx.x);
int y = (blockIdx.y*blockDim.y + threadIdx.y)*4;
int z = (blockIdx.z)*2;

float p0 = 0.f, p1 = 0.f, p2 = 0.f, p3 = 0.f, ...;
for(int i = 0 ; i < NUM_IMAGES_PER_BATCH ; ++i)
{
 // Project and update the 8 voxels
}
atomicAdd(&dst[(z+0)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p0);
atomicAdd(&dst[(z+1)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p1);
atomicAdd(&dst[(z+2)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p2);
atomicAdd(&dst[(z+3)*CUBE_SIDE_2 + y*CUBE_SIZE + x], p3);
...

VOXEL PROJECTION IMPLEMENTATION
  Homogeneous coordinates for the 8 voxels (only 1st and 2nd shown)

  Project and update the voxels in registers (only 1st voxel shown)

float u0 = d_proj[12*i+0]*x + d_proj[12*i+3]*y + d_proj[12*i+6]*z + d_proj[12*i+ 9];
float v0 = d_proj[12*i+1]*x + d_proj[12*i+4]*y + d_proj[12*i+7]*z + d_proj[12*i+10];
float w0 = d_proj[12*i+2]*x + d_proj[12*i+5]*y + d_proj[12*i+8]*z + d_proj[12*i+11];

float u1 = u0 + 1.0f*d_proj[ID][12*i+6]; // 2nd voxel, increase in Z.
float v1 = v0 + 1.0f*d_proj[ID][12*i+7];
float w1 = w0 + 1.0f*d_proj[ID][12*i+8];

float inv_w0 = 1.f / w0;

float texu0 = u0*inv_w0 + 0.5f;
float texv0 = v0*inv_w0 + 0.5f;

p0 += tex2DLayered<float>(src, texu0, texv0, i) * (inv_w0*inv_w0);

APPLICATION PROFILE
  NVIDIA Tesla K40m (CUDA 7.0), cube 512^3, data in fp32

  Limited by kernel performance
  Reconstructed cube, stored on the device
  Projected images and matrices, transferred in batches (32 per kernel)

  H2D copies at ~12GB/s over PCIE 3.0
  Hidden behind kernel computation

APPLICATION PERFORMANCE
  Performance in GUPS (higher is better), input data in fp16 / fp32

  For 512^3, Intel Xeon Phi 5110P reaches 9 GUPS (fp32) [1] (~12x slower than M6000)

Cube K40m (Kepler) M6000 (Maxwell) Limiter
128 10 / 5 10 / 5 H2D/D2H copies

256 63 / 30 73 / 33 Kernels

512 102 / 82 151 / 112 Kernels

1024 108 / 106 155 / 154 Kernels

[1] J. Hofmann et al. Comparing the performance of different x86 SIMD instruction sets for a medical imaging application on modern multi- and
manycore chips. In Proceedings of the 2014 Workshop on Programming models for SIMD/Vector processing (WPMVP '14). 2014

PERFORMANCE ON K40
  Kernel performance varies during reconstruction

  Execution time depends on projection matrix

fp16

fp32

KERNEL METRICS (FP16, K40)
  No clear performance limiter. Latency bound.

KERNEL METRICS (FP32, K40)
  Still no clear performance limiter. Latency bound.

DETAILED PERFORMANCE
  Split the kernel. Each kernel computes 16 slices in the Z dimension

AUTO-TUNING
  Ideas

  Process different numbers of voxels per thread (2, 4, 8, 16)

  Distribute the voxels per thread differently: In Y dimension, in Z dimension, in both

AUTO-TUNING
  Improved performance

  Vary block sizes and vary # of voxels computed per each thread (4 or 8)

Cube K40m (with) K40m (without)

128 10 / 5 10 / 5

256 86 / 46 63 / 30

512 117 / 96 102 / 82

PERFORMANCE TECHNIQUE SUMMARY
  Batch data and work

  Send some data, do some work, repeat and overlap

  Nearly all data copies hidden behind work

  Provides scaling to any size problem

  Multiple output voxels per thread
  Reduces redundant work

  More efficient use of registers

  Memory accesses exhibit spatial and temporal locality
  By mapping of voxels to threads and voxels to thread groups

  Use arithmetic hardware outside the SM
  Texture performs interpolation

  L2 performs per-voxel sums with atomics

CONCLUSIONS
  Medical Imaging Applications run well on GPUs

  Customer collaboration with NVIDIA
  Better performance today

  Better support in the future

NVIDIA REGISTERED DEVELOPER PROGRAMS
  Everything you need to develop with NVIDIA products
  Membership is your first step in establishing a working relationship with NVIDIA
Engineering

  Exclusive access to pre-releases
  Submit bugs and features requests

  Stay informed about latest releases and training opportunities
  Access to exclusive downloads

  Exclusive activities and special offers
  Interact with other developers in the NVIDIA Developer Forums

 REGISTER FOR FREE AT: developer.nvidia.com

BACKUP: ACHIEVED OCCUPANCY
39 active warps / clock for both fp16 and fp32

