Fast Method to Find Critical Points of the Electron Density in Large Systems

Jorge Garza

Departamento de Química Área de Fisicoquímica Teórica Universidad Autónoma Metropolitana-Iztapalapa.

March 19th, 2015

The analysis of the electron density or other scalar field is important to understand the microscopic world

Visualization of orbitals and electron density

In quantum chemistry, orbitals or electron density are evaluated typically on a mesh to be displayed on a screen by using the marching cubes algorithm.

Electron density

For wave-function methods or density functional theory the electron density is obtained from

$$\rho(\vec{r}) = \sum_{i=1}^{occ} \omega_i \psi_i^*(\vec{r}) \psi_i(\vec{r})$$

Electron density

For wave-function methods or density functional theory the electron density is obtained from

$$\rho(\vec{r}) = \sum_{i=1}^{occ} \omega_i \psi_i^*(\vec{r}) \psi_i(\vec{r})$$

For atoms, molecules or extended systems, in general, the orbitals are represented in a basis set functions

$$\psi_i(\vec{r}) = \sum_{\mu=1}^K c_\mu^{(i)} f_\mu(\vec{r})$$

- $\{f_{\mu}\}$: basis set functions.
- $\{c_{\mu}\}$: coefficients obtained from a quantum chemistry method.
- K: number of the basis functions.

Jorge Garza (UAMI)

March, 2015

4 / 32

In the GTC 2014, I presented one code where the Gaussian functions are used as basis set

$$f_{\mu}(\vec{r}) = (x - X)^{m_{\mu}} (y - Y)^{l_{\mu}} (z - Z)^{n_{\mu}} e^{-\zeta r^2}$$

with

$$r^{2} = (x - X)^{2} + (y - Y)^{2} + (z - Z)^{2}$$

(X, Y, Z): coordinates of a center (nucleus). There are several codes where gaussian functions are used to describe orbitals or electron density for atoms, molecules or solids.

Evaluation of electron density on a GPU

The evaluation of ρ is considered as a reduction problem • One thread is associated to each point on the mesh.

Mesh for the electron density

Mesh on the GPU

Evaluation of electron density on a GPU

The evaluation of ρ is considered as a reduction problem • 64 threads are associated to each point on the mesh.

Mesh for the electron density

Mesh on the GPU

Our code is designed to evaluate :

- Orbitals
- Electron density
- Laplacian
- Reduced gradient
- Electron localization function
- Electrostatic potential

Grid-based methods

Additionally to the visual part related with the electron density, there are tools to understand the chemical bond concept.

The Atoms in Molecules (AIM) analysis predicts a chemical bond in a molecule if the condition

$$\nabla \rho(\vec{r}) = 0$$

is satisfied.

All points that satisfy this condition are known as critical points.

Grid-based methods

For the AIM analysis the critical points searching is an important challenge, in particular when the size of the system and the number of basis functions is large!

We need ρ , $\nabla \rho$ and hessian (second derivatives) of the electron density.

GPUs and WF

March, 2015

10 / 32

AIM on GPUs

æ

AIM on GPUs: Three examples

M06-2X 10 occupied orbitals 96 primitive gaussian functions 1 bond critical point

B3LYP

- 28 occupied orbitals 408 Gaussian functions
- 20 bond critical points
- 6 ring critical points
- 1 cage critical point

MP2

495 occupied orbitals720 primitive gaussian functions51 bond critical points14 ring critical points3 cage critical points

12 / 32

CPU	H ₂ O-H ₂ O		C_8H_8		$({\rm H}_{2}{\rm O})_{12}{\rm CH}_{4}$	
			i'	7-4770		
1	31	(1.00)	1938	(1.00)	254561	(1.00)
2	16	(0.97)	968	(1.00)	128840	(0.99)
4	09	(0.86)	514	(0.94)	67835	(0.94)
			Xe E	5-2670	$\mathbf{v2}$	
1	50	(1.00)	3175	(1.00)	428877	(1.00)
2	25	(1.00)	1591	(1.00)	215960	(0.99)
4	13	(0.96)	793	(1.00)	108103	(0.99)
8	07	(0.89)	398	(1.00)	54211	(0.99)
16	04	(0.78)	200	(0.99)	27170	(0.99)

æ.

AIM on GPUs: Total time in seconds

CPU	H_2O-H_2O	C_8H_8	$({\rm H}_{2}{\rm O})_{12}{\rm CH}_{4}$				
Xe E5-2670 v2							
16 04		200	27170				

Jorge Garza (UAMI)

GPUs and WF

March, 2015 14 / 32

æ.

AIM on GPUs: Total time in seconds

CPU	H_2O-H_2O	$\mathrm{C_8H_8}$	$({\rm H}_{2}{\rm O})_{12}{\rm CH}_{4}$				
Xe E5-2670 v2							
16	04	200	27170				
GPU	H_2O-H_2O	C_8H_8	$({\rm H}_{2}{\rm O})_{12}{\rm CH}_{4}$				
GeForce GTX 760							
1	01	21	2083				
Tesla M2090							
1	01	24	2348				
2		15	1381				
4		13	820				
Tesla K80							
1	00	11	880				
2		08	553				
4		08	350				

Jorge Garza (UAMI)

GPUs and WF

March, 2015

æ.

14 / 32

	Single-precision			Double-precision			
GPU	H_2O-H_2O	C_8H_8	$(\mathrm{H}_{2}\mathrm{O})_{12}\mathrm{CH}_{4}$	H_2O-H_2O	C_8H_8	$({\rm H}_{2}{\rm O})_{12}{\rm CH}_{4}$	
	GeForce GTX 760						
1	01	21	2083	01	43	4809	
	Tesla M2090						
1	01	24	2348	01	37	3783	
2		15	1381		25	2386	
4		13	820		22	1498	

AIM on GPUs

E

Details about implementation of AIM by grid-based methods R. Hernández-Esparza, S.- M. Mejía-Chica, A. Martínez-Melchor, A.- D. Zapata-Escobar, A. Guevara-García, J.- M. Hernández-Pérez, R. Vargas and J. Garza J. Comput. Chem. **35**, 2272-2278 (2014).

AIM on GPUs

Jorge Garza (UAMI)

GPUs and WF

March, 2015 18 / 32

æ

Additionally to the codes based on gaussian functions, there are codes which are implented using Slater Type Orbitals. For example, semiempirical methods use this kind of basis set

$$f_{\mu}(\vec{r}) = (x - X)^{m_{\mu}} (y - Y)^{l_{\mu}} (z - Z)^{n_{\mu}} e^{-\zeta r}$$

with

$$r = \sqrt{(x - X)^2 + (y - Y)^2 + (z - Z)^2}$$

(X, Y, Z): coordinates of a center (nucleus).

These methods use only valence orbitals.

Semiempirical methods present an important challenge!!

In these methods the number of atoms in the molecule is large, and consequently the number of basis set functions to be used could be huge. Analysis of the electron density from semiempirical methods implemented in our code

Evaluation of scalar and vector fields on GPUs

Rendering by using GPUs

Code based on CUDA

Coefficients from MOPAC

Computing and rendering of scalar fields on a GPU for semiempirical methods

Our code is designed to evaluate :

Orbitals

- Electron density (ρ)
- Laplacian $(\nabla^2 \rho)$

• Reduced gradient $(|\nabla \rho|/\rho^{4/3})$

Computing and rendering of scalar fields on a GPU for semiempirical methods

Alanine: 13 atoms, 32 orbitals, 56 primitive functions. β -cyclodextrin:168 atoms, 252 orbitals, 432 primitive functions,

Jorge Garza (UAMI)

GPUs and WF

March, 2015 23 / 32

Computing and rendering of scalar fields on a GPU for semiempirical methods

Poly-alanine/60 residues

603 atoms 844 orbitals, 1506 primitive functions

Jorge Garza (UAMI)

GPUs and WF

March, 2015 24 / 32

Evaluation of the electron density for poly-(Ala)_n from semiempirical methods

	and the second states and						
n	Atoms	Func.	Orb.	Points	T	ime (s)	
					M2090	K80	CPU
4	43	106	60	$313,\!632$	1	1	26
5	53	131	74	$373,\!248$	2	2	45
10	103	256	144	$958,\!800$	15	7	446
15	153	381	214	$1,\!953,\!504$	48	24	1999
20	203	506	284	3,369,600	128	54	6112
30	303	756	424	$8,\!276,\!400$	701	349	33007
35	353	881	494	$10,\!365,\!264$	1295	509	56533

Evaluation of the electron density for poly-(Ala)_n from semiempirical methods

n	Atoms	Func.	Orb.	Points		$\overline{\Gamma}$ ime (s)	
					M2090	K80	CPU
4	43	106	60	$313,\!632$	1	1	26
5	53	131	74	373,248	2	2	45
10	103	256	144	$958,\!800$	15	7	446
15	153	381	214	$1,\!953,\!504$	48	24	1999
20	203	506	284	<mark>3,369,6</mark> 00	128	54	6112
30	303	756	424	$8,\!276,\!400$	701	349	33007
35	353	881	494	$10,\!365,\!264$	1295	509	56533
40	403	1006	564	$13,\!893,\!120$	1961	1009	
45	453	1131	634	19,077,120	3523	1537	
50	503	1256	704	24,135,552	5378	2171	
60	603	1506	844	$39,\!387,\!256$	12428	5691	
70	703	1756	984	$57,\!189,\!888$	23405	10509	

Jorge Garza (UAMI)

GPUs and WF

March, 2015

25 / 32

Systems linked by hydrogen bonds

æ

Systems linked by hydrogen bonds

Jorge Garza (UAMI)

GPUs and WF

March, 2015 27 / 32

Systems linked by hydrogen bonds

GPUs and WF

1020 atoms 1399 orbitals, 2532 primitive functions

 $7,\!429,\!000$ points in the mesh

	M2090	K80
ho	5940	3813
$\frac{ abla ho }{ ho^{4/3}}$	21308	9773

- Code on GPUs to evaluate scalar and vector fields in quantum chemistry.
- Wave function from NWChem, G09, GAMESS or MOPAC.
- Critical points searching based on grid-methods for large systems.
- Stable code and tested over several GPUs.

- Raymundo Hernández-Esparza
- Luis Antonio Soriano-Agueda
- Sol Milena Mejía-Chica
- Apolinar Martínez-Melchor
- Andy D. Zapata-Escobar
- Dr. Rubicelia Vargas (UAMI)
- Dr. Julio Manuel Hernández-Pérez (BUAP)
- Dr. Raquel Váldez (UAMI)
- M. C. Oscar Yañez (UAMI)

CONACYT: Project 155070

www.fqt.izt.uam.mx

Jorge Garza (UAMI)

GPUs and WF

March, 2015 32 / 32