
JULIEN DEMOUTH, NVIDIA

BINARY SEGMENTATION OF
MANY 3D CUBES IN CUDA

PROBLEM IN 2D
  A grid of values + list of threshold(s), label the connected components

1 2 3 1

3 4 4 0

2 2 3 1

1 2 0 3

F F T F

T T T F

F F T F

F F F T

1 1 2 3

2 2 2 3

5 5 2 3

5 5 5 4

>= 3 5 cc

Using 5-connectivity

F F F F

F T T F

F F F F

F F F F

1 1 1 1

1 2 2 1

1 1 1 1

1 1 1 1

>= 4 2 cc

PROBLEM
  2 types of connectivity

  Generalized to 3D with 7-point and 27-point connectivity

5 points 9 points

CONNECTED COMPONENTS IN GRAPHS
  Graph labeling using BFS on the GPU

  See Duane Merrill and Michael Garland presentation

  http://on-demand.gputechconf.com/gtc-express/2013/presentations/understanding-
parallel-graph-algorithms.pdf

  The Gunrock library for connected components in graphs
  https://github.com/gunrock/gunrock

  But we want to solve a much more structured problem with a 3D cube

OUR STRATEGY
  Each cell is given a different label at the beginning

  We propagate the “min”-labels to the right, then to the left

l = label[0], t = tag[0]
for i = 1 to n-1:
 if t == tag[i] and l <= label[i]:
 label[i] = l
 elif t == tag[i]:
 l = label[i]
 else:
 l = label[i], t = tag[i]
for i = n-2 to 0:
 ...

2 3 4 5 6 7 4 1

1 3 3 5 6 7 1 4

1 3 3 5 6 7 1 1

OUR STRATEGY
  Extend it to 2D (assume 9-point connectivity)

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

0 0 0 3 3 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Sweep 1st row

0 0 0 3 3 5 6 7

8 9 0 0 3 5 6 7

16 17 18 19 20 21 22 23

Propagate
1st row

0 0 0 3 3 5 6 7

8 8 0 0 3 5 6 7

16 17 18 19 20 21 22 23

Sweep 2nd row

0 0 0 3 3 5 6 7

8 8 0 0 3 5 6 7

0 0 0 3 0 0 6 7

0 0 0 3 3 5 6 7

8 8 0 0 3 5 6 7

16 0 0 3 0 5 6 7

Sweep 3rd row

Propagate
2nd row

…

OUR STRATEGY
  If we stop now, we have incorrect cells

  We have to sweep “up” to bring the “bottom 0” to the “top”

0 0 0 3 3 5 6 7

8 8 0 0 3 5 6 7

0 0 0 3 0 0 6 7

0 0 0 3 3 0 6 7

8 8 0 0 3 0 6 7

0 0 0 3 0 0 6 7

OUR STRATEGY
  How many passes do we need?

  Each connected component expands by at least one cell per pass: O(N^2)

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

After 1 pass After 2 passes

OUR STRATEGY
  We can build a lower bound in Ω(N^2)
  We use “up-and-down” blocks

  It takes two passes to propagate into an “up-and-down” block
  We can combine ~ N/4 such blocks per row

  We can build N/3 rows (add 1 row of insulator)

0 0 0

0 0

0 0 0

0 0 0

OUR STRATEGY
  In practice, it does not seem to happen much

  To do: Evaluate the probabilistic complexity (à la quicksort)

  We use a simple stopping criterion
  If no label changes during a pass, we have converged and we stop

  We trivially extent the strategy to 3D cubes
  Use forward/backward passes in the Z dimension

IMPLEMENTATION
  How can we make the 1D pass fast?

  Use one warp (32 threads) per row
  Each thread stores 8 labels (for N = 256) in 8 registers (1 reg. per label)

  Do intra-warp segmented scan to get the values from the other threads

  It is implemented with __shfl and without shared memory
  We use 12 __shfl per pass (6 for forward and 6 for backward)

IMPLEMENTATION
  The 2D propagation is done with one warp per 2D slice

  Each warp starts at row 0

  For each row
  Threads in the warp get the values from the previous row

  Do the 1D pass

  The 3D propagation alternates between the Y and Z dimensions

IMPLEMENTATION
  In a preprocessing step, we generate as many cubes as thresholds

  We pack the labels with the T/F tag
int label = (z*N*N + y*N + x) | (value >= threshold) << 31

  We reorganize the labels in memory to have perfectly coalesced accesses

  For a given row, store labels 0, 1, 2, 3, 8, …, 11, 16, …, 19
  Thread 0 can read 0, 1, 2, 3 with a single int4

  The warp can load all the labels in 2x perfectly coalesced int4 requests

PERFORMANCE RESULTS
  3D cubes, 27-point connectivity
  Segmented CT reconstructions, 64 thresholds

  No ECC
  Tesla K20c @ 2600MHz/758MHz, Tesla K80 @ 2505MHz/875MHz

Cube side Tesla K20c (Time) Tesla K80 (Time) Passes

128 0.084s 0.046s 11

256 0.742s 0.364s 11

Input CT scans from the RabbitCt benchmark: http://www5.cs.fau.de/research/projects/rabbitct/

PERFORMANCE RESULTS
  Random data (uniform distribution), much slower to converge

  For N = 256,
  ½ of the cubes converge in 8 iterations

  ¾ of the cubes converge in 11 iterations

Tesla K20c (Time) Passes

128 0.247s 68

256 2.498s 117

THROUGHPUT LIMITED
  78% issue efficiency (with high DRAM BW ~ 70% of peak)

THANK YOU

