Massively-Parallel Vector Graphics

Francisco Ganacim Rodolfo S. Lima
Luiz Henrique de Figueiredo Diego Nehab
IMPA

ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia 2014)

Vector graphics are everywhere

clip-paths to the shortcut tree like any other path geometry, and
maintain in each shortcut tree cell a stream that matches the scene
grammar described in section 3. Clipping operations are performed
per sample and with object precision.

When evaluating the color of each sample, the decision of whether
or not to blend the paint of a filled path is based on a Boolean
expression that involves the results of the inside-outside tests for the
path and all currently active clip-paths. Since this expression can be
arbitrarily nested, its evaluation seems to require one independent
stack per sample (or recursion). This is undesirable in code that
runs on GPUs. Fortunately, as discussed in section 4.3, certain
conditions (see the pruning rules) allow us to skip the evaluation of
large parts of the scene. These conditions are closely related to the
short-circuit evaluation of Boolean expressions. Once we include
these optimizations, it becomes apparent that the value at the top
of the stack is never referenced. The successive simplifications that

come from this key observation lead to the flat clipping algorithm,

which does not require a stack (or recursion).

Flat clipping The intuition is that, during a union operation, the
first inside-outside test that succeeds allows the algorithm to skip all
remaining tests at that nesting level. The same happens during an
intersection when the first failed inside-outside test is found. Values
on the stack can therefore be replaced by knowledge of whether or

not we are currently skipping the tests, and where to stop skipping.

The required context can be maintained with a finite-state machine.

Initial state
d+—0,u+0

).d<s,u>0 cy fi,a=1 |
s s—1 s<—([s+ 0 A

C@U@), d<s

\—/
[,d<s

Figure 12: State transition diagram for the finite-state machine of
the flat-clipping algorithm.

two transitions away from S. The first transition happens when
an activate operation is found. Looking at the scene grammar, we
see that this can only happen if the machine arrived at S due to
a c; transition from P. In other words, an entire clip-path test has
succeeded, and therefore we transition unconditionally back to P.
The second transition happens when a matching) is found. The
condition © = 0 means the machine is not inside a nested clip-path
test, so it simply transitions back to P. If the machine is skipping
inside a nested clip-path test, one of the inner clip tests must have
passed, and therefore the outer test can be short-circuited as well.
The machine simply resets the stop depth to the outer level and
continues in state S.

The remaining transitions are between P and SA. If the machine
finds a | while in state P, it must have been performing a clip-path

T ; "lr}?.

Vector graphics are everywhere

’g '... el

opé@ S
W~ P
ey a

o

g,ﬁa“!v@” 7. et o

ol ": ..:y». E
AV/ ",‘) iz E'{?

P :
@%dé@ﬁ& adelei
BIGLY

*x'_“': X
oLl

Ve .
mencea
SRS

alais Royall:

=i Iﬂ“!‘ =

a3 mmm
' i

-

i %&Ie Wilitire
'\C‘ S

2N >

Vector graphics are everywhere

Points to be made

* 2D graphics incredibly prevalent
* 2D graphics is not a “solved problem”
* [t deserves more attention

e Can benefit from parallelism

* Increased computational power

* Needs new algorithms

Diffusion-based vector graphics

[Orzan et al. 2008] [Finch et al. 2011] [Sun et al. 2012 and 2014]

PATH-BASED VECTOR GRAPHICS

Basic concepts are paths and paints

[Warnock & Wyatt 1982]

Closed contours

Paths

Segments

——————————-9
/

Linear Quadratic Cubic

Inside-outside test

Winding numbers

+OU

Even-odd rule

Inside-outside test

Winding numbers

%*0®

Non-zero rule

Paints

Solid

Paints

Radial gradient Linear gradient Texture

Availability

* Formats & languages
* PostScript, CDR, PDF, SVG, OpenXPS, Al
 TTF fonts, Type 1 fonts

e Editors

* Adobe lllustrator, CorelDraw, Inkscape, FontForge, ...

* Rendering tools & APIs

 NV_Path_Rendering, OpenVG, Cairo, Qt, MuPDF,
GhostScript, Apple’s, Adobe’s, Microsoft’s, ...

Rasterization or rendering

Generate image at chosen resolution for display or printing

Traditional rendering algorithm

* Render one shape after the other

for all shapes
prepare for acceleration
for all samples in shape
blend paint over output

* Most tools follow this approach

Active-edge-list polygon filling

e Uses spatial coherence in horizontal spans

w4
y

[Wylie et al. 1967]

Stencil-based polygon filling

e Rasterize winding numbers into stencil

w4
y

[Neider et al. 1993]

Curve rendering by graphics hardware

* Constrained triangulation + affine implicitization

[Loop & Blinn 2005]

Implicitization

//

Theorem: A polynomial parametric curve

c(t) = (2(t),y(t))

has a polynomial implicit form C(x,y) with
Clap, yp) =0 & Jtp | ctp) = (2p, yp)
 Different methods
* Sederberg [1984]

* Based on Cayley-Bézout or Sylvester

* Loop & Blinn [2005]

* Based on Salmon (affine implicitization)

\\

c(t) = [:i’] (1—1)2+ [g] 2t(1 —t) + [_31] t? & C(z,y) =22+ 6y —3

NV_Path Rendering

* Stencil-based filling with affine implicitization

 Complete, state-of-the-art pipeline

[Neider et al. 1993] + [Loop & Blinn 2005] = [Kokojima et al. 2006] = [Kilgard & Bolz 2012]

Cell

lllustration clipped against cell

Alternative approach

uE . Tl by 4
-:_iif Wi NP

Cell grid

Magnification with image textures

* Can become blurry at high magnification levels

p
RECYCLE THIS ¢V

[Nehab & Hoppe 2008]

Magnification with vector textures

* Maintains sharpness indefinitely

RECYCLE

= RECYCLE THIS ¢

[Nehab & Hoppe 2008]

General warps in object space

[Nehab & Hoppe 2008]

Vector texture rendering algorithm

* For texture mapping and effects

for all shapes
insert into acceleration structure

for all samples
for subset of shapes containing sample
blend paint into output

* Mostly limited to academia

[Sen 2004] [Ramanarayanan et al. 2004] [Qin et al. 2008]
[Parilov & Zorin 2008] [Nehab & Hoppe 2008]

Comparison of rendering algorithms

Vector textures Traditional

* Extensive pre-processing Modest preprocessing

Retained mode Immediate mode

Samples are independent Sample cost is amortized

General warps Limited warps

Analogous to Ray-tracing Analogous to Z-buffering

State of the art in accelerated rendering

Vector textures Traditional

for all shapes
prepare for acceleration

blend paint into output blend paint into output

[Nehab & Hoppe 2008] [Kilgard & Bolz 2012] (NV_Path_Rendering)

Massively-Parallel Vector Graphics

Goal

blend paint into output

Ours [Ganacim et al. 2014]

Contributions

* New primitive: Abstract segment

* Based on implicitization, no intersection computations

e New acceleration data structure: The Shortcut Tree

* Optimal, adaptive, segment-parallel construction

 State-of-the-art rendering quality

* No compromises

ABSTRACT SEGMENTS

Does shape cover sample?

Does ray intersect with segment?

Computing intersections

* Segmentis c(t) = (z(t),y(t)), ¢ €]0,1]
* Sample at (x4, ys)

* Intersection test
* Solve y(t) = y, for ¢
* Foreacht; € [0, 1] such that x(t;) > x4
» Test sign of ¢ (¢;) to inc/dec winding number
e Requires solving quadratics and cubic equations

* Complicated, slow, not robust

Monotonic segments

Monotonization makes bounding-boxes very useful

Example of monotonized segment

Computing intersections

e Split into monotonic segments during preprocess

* Parts with cm(m) = (Zm (Em)s Ym (tm)) tm € 10,1]
* 2'(t,,) and y/(¢,,) have no roots for ¢,, € [0, 1]
* Requires solving linear or quadratic equations

e Simpler intersection test during rendering

* One intersection at t¢,,,; € [0, 1]if and only if
min (Y (0), Ym (1)) < ys < max (ym(0), Ym (1))
e Find ¢,,,; robustly (e.g., safe Newton—Raphson)
* Checkthat z(t,,;) > x
* Test sign of 4,,(1) — ¥, (0) to inc/dec winding number

Implicit linear test

* Outside bounding box, trivial
* Inside bounding box, use implicitization

Linear

Ly
L(z,y) = a1o(x — o) + ao1(y — ¥o)

s = sign(y1 — yo)
aio = S(yl — yo)

aplr — S(xo — ZC‘l)

Implicit linear test

* Outside bounding box, trivial
* Inside bounding box, use implicitization

Ly Linear

Q-———————————
s '
I \\ : L(x, y) = a10(517 — 330) + a01(y - yo)
I \ | .
I %\\ ! s = sign(y1 — yo)
| 2\ ! —
| o a0 = s(y1 — Yo)
N (20 — 1)
| ap1 = S\Xop — X1
et % L;

What about curves?

* Must be careful
* Parametrization is local to [0,1]
* Implicitization is global

r
|
|
|
|
|
|
|
|
|
|
|

+

4

Monotonic segment with no inflections

Theorem: Monotonic segments e After split, 8 configurations
with no inflections cannot cross * Goes up/down
line connecting endpoints for Connects diagonal/anti-diagonal

te€(0,1) * Entirely to left/right of diagonal

Monotonic quadratics

Theorem: Quadratic ¢(t) cannot
reenter triangle ()o()1(Q)> for

t & |0,1]

Theorem: Quadratic ¢(t) cannot
reenter triangle ()o P ()4 for

t & |0,1]

L(z,y) <0 or Q(z,y) <0
Q(x,y) = (a10 + ag0z)x + (ap1 + @112 + ag2y)y

Monotonic quadratics

Theorem: Quadratic ¢(t) cannot
reenter triangle ()o()1(Q)> for

t & |0,1]

Theorem: Quadratic ¢(t) cannot
reenter triangle ()o P ()4 for

t & |0,1]

S

e

S

x, y) = (CLlo -+ &20$)CIZ + (CL01 +ai1x + a02y)y

Abstract segments

* Similar setup for cubics and rational quadratics
* Primitive of choice for vector graphics pipeline

* Encapsulates monotonic segment s
* Bounding-box, up-down, precomputed implicitization
* Method s.winding(x,y)

e Returns +1 or -1 if ray from (x,y) to (eo,y) hits, O otherwise

Sampling algorithm

for all samples (Xx,y)

if winding number implies inside
blend paint into output

The right acceleration data structure

THE SHORTCUT TREE

Acceleration data structure

e —— e
NS

‘ ,
T aNEEERn . cand==T T)

Ours [Ganacim et al. 2014]: Quadtree

[Nehab & Hoppe 2008]: Regular grid

Sampling algorithm

for all samples

winding number = ©
winding number += s.winding(x,y)
if winding number implies inside
blend paint into output

What goes on each cell?

* Specialized subset of illustration
* Everything that is needed to render cell region

Invariant: The winding number of all paths about all samples in the cell
region, computed from the cell contents, is exactly the same as in the
complete illustration

Clippnig is overkill

We only cast rays to the right

What goes on each cell?

* Specialized subset of illustration
* Everything that is needed to render cell region
* Only what is needed to render cell region

Invariant: The winding number of all paths about all samples in the cell
region, computed from the cell contents, is exactly the same as in the
complete illustration

Case 2 Case 1

sl

Case 3

What about content to right of cell?

Input contour

Case 2 Case 1

Case 3

Cannot be simply discarded

Case 2 Case 1

Case 3

Could use clipping

Input contour Equivalent but non-local

\n'—\

4

[Sutherland & Hodgman 1974]

Case 2 Case 1

Case 3

Input contour

Shortcut simplification

Equivalent but non-local Equivalent and locally decided

T v /

Winding increment:

1l

=

+1 ¥ +1 ¥ +1
- v - v v
Winding increment: 0

-1 ~ -1 ~ -
v v v
Winding increment: -1

[Nehab & Hoppe 2008] [Ganacim et al. 2014]

Correctness of shortcut simplification

A

Theorem: Flipping a shortcut
segment adds #1 to all winding
numbers in the cell

Corollary: There is an integer k
that restores the invariant

Corollary: The residual between
winding number of input and
simplification at any point gives k

>

Shortcut simplification summary

* Include segment if and only if it
overlaps with cell

e Add shortcut up for segments
that cross border

® * Add winding increments for
segments that cross border

(=)
&—>

Shortcut simplification preserves the invariant

7 Winding increment: -1

[Nehab & Hoppe 2008] (cut segments to cell boundaries)

Ours [Ganacim et al. 2014] (preserve original segments)

Subdivision

® ®
© ©

Child cells inherit winding
increments from parent

Include those segments that
overlap with each child cell

Check border crossings with
® ® © @ for shortcuts

Check border crossings with
® ® © for increments

Subdivision preserves the invariant

Example subdivision

Winding increment: -1~ 4
Shortcut segment

Shortcut segment

Parallel subdivision

Segment-parallel classification

Parallel-scan followed by segment-parallel copy

SAMPLE SCHEDULER

Sample sharing

sample weight Unit Iength kernel

000 -0 —

pixel coordinates

sample weight Length 4 kernel: loop by pixel

pixel coordinates

sampleweight Length 4 kernel: loop by unit sample group

|

pixel coordinates

Parallel sample scheduling

Find tree cell for each sample
eQeeQeqeceee

Group samples by cell
eeeQQaQeeaeee

Compute sample colors...

... and integrate

XXX\

RESULTS

Alias, noise, and gamma

Most renderers
Gamma,
Box weights

NVPR
Linear, 8spp multisampling

[Nehab & Hoppe 2008]
Linear, 1spp,
Prefilter approximation

Ours [Ganacim et al. 2014]
Linear, 32x4x4 spp,
Cardinal Cubic B-spline weights

Conflation

e Resolving each path to pixels
before blending causes artifacts

* Correct results require blending
each sample independently
* NVPR also correct

Most renderers Ours

Examples of user-defined warps

Ranpail

“Boy
i

MopaY

Coomny

Quartier
du Montparnasse

s:Denfert-| Rochc:re augouevardi

1
2 \
ek Scunt acques ;U\
< Jacal \

foreshorten

lwmn

recursive

- 2479 Ko

S‘“““ehz ation ¢ L.l(wpll« o]
“\Wea m: ps W° ell ! enpl?”
78

\k\\on npul”
gort

Scan
o erriny nul(:tl”
m\mnn\-u o proce

AL whi o

> steps in "
Sing I‘\l‘ " = /,,n/u

Fecursi

8 Results

Table | summarizes the main characteristics of all the
s of number of required steps. the progression

. and the reduction in memory b
¢ consisted of an NVIDIA GTX 4
) CUDA cores, p = 15 SMs, «

I 1 C for CUDA, un
} 2-bit float

ith 1.5GB
s/SM). All
er CUDA 4.0, All

es.

Our test h
of RAM
algorithms wer

cated 100 times to reduce variation

rements were repe
ches that could

that small images are solved in sequence, not in b;
wrallelism and performance

lependently for adde

* Warp each sample position
e Not a post-processing step

Engages sample scheduler

250

200

150

100

50

Preprocessing time (ms)

high complexity

low complexity

medium complexity

Paper 1

Contour Paris 30k

250

200

150

100

50

Rendering time (ms)

high complexity

W Ours 32x W NVPR 8x

medium complexity

low complexity

Drops

Paper 1

Countour Paris 30k

Left out of talk

* New algorithm for rendering with clip-paths

e Full SVG semantics, no stack or recursion

* Parallel pruning algorithm in preprocessing

* Eliminates occluded or clipped paths from cells

* Please see paper for other omitted details

Several ideas for future work

Support for rational cubics (enable object-space warps)
Support for mesh-based gradients

Parallel stroke-to-fill conversion

Transparency groups

Subpixel rendering (e.g., ClearType)

Raster effects over groups (e.g., Gaussian Blur)
Different subdivision strategies (e.g, kd-tree)

Port back to CPU with multi-threaded vector code
Hardware implementation

Conclusions

* Fully parallel vector graphics rendering solution
* Interactive preprocessing times

* Unprecedented output quality
e Support for user-defined warps
* Best option for complex illustrations

* Source-code available
www.impa.br/~diego/projects/GanEtAl14/

http://www.impa.br/~diego/projects/GanEtAl14/

