
Massively-Parallel Vector Graphics

Francisco Ganacim Rodolfo S. Lima

Luiz Henrique de Figueiredo Diego Nehab

IMPA

ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH Asia 2014)

Vector graphics are everywhere

Vector graphics are everywhere

Vector graphics are everywhere

Points to be made

• 2D graphics incredibly prevalent

• 2D graphics is not a “solved problem”

• It deserves more attention

• Can benefit from parallelism

• Increased computational power

• Needs new algorithms

Diffusion-based vector graphics

[Orzan et al. 2008] [Finch et al. 2011] [Sun et al. 2012 and 2014]

PATH-BASED VECTOR GRAPHICS

Related work

Basic concepts are paths and paints

[Warnock & Wyatt 1982]

Paths

Closed contours

Segments

Linear Quadratic Cubic

Inside-outside test

Even-odd rule

-1

-1

+1

-1
0

-2 +1

+1
2

Winding numbers

Inside-outside test

Non-zero rule

-1

-1

+1

-1
0

-2 +1

+1
2

Winding numbers

Paints

Solid

Paints

Radial gradient Linear gradient Texture

Availability

• Formats & languages
• PostScript, CDR, PDF, SVG, OpenXPS, AI

• TTF fonts, Type 1 fonts

• Editors

• Adobe Illustrator, CorelDraw, Inkscape, FontForge, …

• Rendering tools & APIs

• NV_Path_Rendering, OpenVG, Cairo, Qt, MuPDF,
GhostScript, Apple’s, Adobe’s, Microsoft’s, …

Rasterization or rendering

Generate image at chosen resolution for display or printing

Traditional rendering algorithm

• Render one shape after the other

• Most tools follow this approach

for all shapes
 prepare for acceleration
 for all samples in shape
 blend paint over output

Active-edge-list polygon filling

• Uses spatial coherence in horizontal spans

[Wylie et al. 1967]

• Rasterize winding numbers into stencil

Stencil-based polygon filling

[Neider et al. 1993]

+1

+1

+1

0

-1

-1

-1

0 -1

0

-1

-2

-1

• Constrained triangulation + affine implicitization

Curve rendering by graphics hardware

[Loop & Blinn 2005]

Implicitization
Theorem: A polynomial parametric curve

has a polynomial implicit form with

• Different methods

• Sederberg [1984]
• Based on Cayley-Bézout or Sylvester

• Loop & Blinn [2005]
• Based on Salmon (affine implicitization)

• Stencil-based filling with affine implicitization

• Complete, state-of-the-art pipeline

NV_Path_Rendering

[Neider et al. 1993] + [Loop & Blinn 2005] ≈ [Kokojima et al. 2006] ≈ [Kilgard & Bolz 2012]

Cell grid

Cell

Alternative approach

Illustration clipped against cell

• Can become blurry at high magnification levels

Magnification with image textures

[Nehab & Hoppe 2008]

Magnification with vector textures

• Maintains sharpness indefinitely

[Nehab & Hoppe 2008]

General warps in object space

[Nehab & Hoppe 2008]

• For texture mapping and effects

• Mostly limited to academia
[Sen 2004] [Ramanarayanan et al. 2004] [Qin et al. 2008]

[Parilov & Zorin 2008] [Nehab & Hoppe 2008]

for all samples
 for subset of shapes containing sample
 blend paint into output

for all shapes
 insert into acceleration structure

Vector texture rendering algorithm

Vector textures

• Extensive pre-processing

• Retained mode

• Samples are independent

• General warps

• Analogous to Ray-tracing

Traditional

• Modest preprocessing

• Immediate mode

• Sample cost is amortized

• Limited warps

• Analogous to Z-buffering

Comparison of rendering algorithms

for all shapes

 insert in acceleration structure

for all output samples

 for subset of shapes covering sample

 blend paint into output

Vector textures Traditional
for all shapes

 prepare for acceleration

for all shapes

 for all shape samples in parallel

 blend paint into output

State of the art in accelerated rendering

[Nehab & Hoppe 2008]

[Kilgard & Bolz 2012] (NV_Path_Rendering)

for all segments of all shapes

 insert in acceleration structure

for all output samples

 for subset of shapes covering sample

 blend paint into output

Goal

Massively-Parallel Vector Graphics

Ours [Ganacim et al. 2014]

Contributions

• New primitive: Abstract segment

• Based on implicitization, no intersection computations

• New acceleration data structure: The Shortcut Tree

• Optimal, adaptive, segment-parallel construction

• State-of-the-art rendering quality

• No compromises

ABSTRACT SEGMENTS

Finding the right primitive

Does shape cover sample?

-1 +1 -1
-1

p

Does ray intersect with segment?

0
+1 p -1

Computing intersections
• Segment is
• Sample at

• Intersection test

• Solve for
• For each such that
• Test sign of to inc/dec winding number

• Requires solving quadratics and cubic equations

• Complicated, slow, not robust

Monotonic segments

Monotonization makes bounding-boxes very useful

Example of monotonized segment

0
p +1 -1

Computing intersections
• Split into monotonic segments during preprocess
• Parts with
• and have no roots for
• Requires solving linear or quadratic equations

• Simpler intersection test during rendering

• One intersection at if and only if

• Find robustly (e.g., safe Newton–Raphson)
• Check that
• Test sign of to inc/dec winding number

Implicit linear test

• Outside bounding box, trivial

• Inside bounding box, use implicitization

Implicit linear test

• Outside bounding box, trivial

• Inside bounding box, use implicitization

What about curves?

• Must be careful

• Parametrization is local to [0,1]

• Implicitization is global

–

–

+

+ +

–

–

–

+

–

Monotonic segment with no inflections
Theorem: Monotonic segments
with no inflections cannot cross
line connecting endpoints for

• After split, 8 configurations
• Goes up/down

• Connects diagonal/anti-diagonal

• Entirely to left/right of diagonal

Monotonic quadratics
Theorem: Quadratic cannot
reenter triangle for

Theorem: Quadratic cannot
reenter triangle for

or

Monotonic quadratics

and

Theorem: Quadratic cannot
reenter triangle for

Theorem: Quadratic cannot
reenter triangle for

Abstract segments

• Similar setup for cubics and rational quadratics

• Primitive of choice for vector graphics pipeline

• Encapsulates monotonic segment s

• Bounding-box, up-down, precomputed implicitization

• Method s.winding(x,y)

• Returns +1 or -1 if ray from (x,y) to (∞,y) hits, 0 otherwise

Sampling algorithm
for all samples (x,y)

 for all shapes

 winding number = 0

 for all segments s

 winding number += s.widing(x,y)

 if winding number implies inside

 blend paint into output

THE SHORTCUT TREE

The right acceleration data structure

[Nehab & Hoppe 2008]: Regular grid Ours [Ganacim et al. 2014]: Quadtree

Acceleration data structure

Sampling algorithm
for all samples

 find cell containing sample

 for subset of shapes in cell

 winding number = 0

 for subset of segments s in cell

 winding number += s.winding(x,y)

 if winding number implies inside

 blend paint into output

What goes on each cell?

• Specialized subset of illustration

• Everything that is needed to render cell region

Invariant: The winding number of all paths about all samples in the cell
region, computed from the cell contents, is exactly the same as in the
complete illustration

[Warnock 1969]

Clippnig is overkill

We only cast rays to the right

What goes on each cell?

• Specialized subset of illustration

• Everything that is needed to render cell region

• Only what is needed to render cell region

Invariant: The winding number of all paths about all samples in the cell
region, computed from the cell contents, is exactly the same as in the
complete illustration

What about content to right of cell?

-1

+1

-1

Cannot be simply discarded

0

0

0

✗

✗

✗

-1

+1

-1

✓

✓

✓

-1

+1

-1

✓

✓

✓

Could use clipping

[Sutherland & Hodgman 1974]

-1

+1

-1

✓

✓

✓

-1

+1

-1

✓

✓

✓

-1

+1

-1

✓

✓

✓

Shortcut simplification

[Nehab & Hoppe 2008] [Ganacim et al. 2014]

0

0 +1

-1

Correctness of shortcut simplification
Theorem: Flipping a shortcut
segment adds ±1 to all winding
numbers in the cell

Corollary: There is an integer k
that restores the invariant

Corollary: The residual between
winding number of input and
simplification at any point gives k

Shortcut simplification summary
• Include segment if and only if it

overlaps with cell

• Add shortcut up for segments
that cross border

• Add winding increments for
segments that cross border

Shortcut simplification preserves the invariant

B

A

A

B

[Warnock 1969]

[Nehab & Hoppe 2008] (cut segments to cell boundaries)

Ours [Ganacim et al. 2014] (preserve original segments)

Subdivision
• Child cells inherit winding

increments from parent

• Include those segments that
overlap with each child cell

• Check border crossings with
 for shortcuts

• Check border crossings with
 for increments

Subdivision preserves the invariant

C

B A

D

G

E F

C B A D

G E F

Example subdivision

Parallel subdivision

s
s

-

Segment-parallel classification

Parallel-scan followed by segment-parallel copy

SAMPLE SCHEDULER

Sample sharing

Sample sharing
Unit length kernel

pixel coordinates

sample weight

Length 4 kernel: loop by pixel sample weight

pixel coordinates

Length 4 kernel: loop by unit sample group sample weight

pixel coordinates

Parallel sample scheduling

Find tree cell for each sample

Group samples by cell

Compute sample colors…

… and integrate

RESULTS

Alias, noise, and gamma

NVPR
Linear, 8spp multisampling

Ours [Ganacim et al. 2014]
Linear, 32x4x4 spp,
Cardinal Cubic B-spline weights

[Nehab & Hoppe 2008]
Linear, 1spp,
Prefilter approximation

Most renderers
Gamma,
Box weights

Conflation
• Resolving each path to pixels

before blending causes artifacts

• Correct results require blending
each sample independently
• NVPR also correct

seam

Most renderers Ours

Examples of user-defined warps
• Warp each sample position
• Not a post-processing step

• Engages sample scheduler

foreshorten

swirl lens

Preprocessing time (ms)

0

50

100

150

200

250

Car Drops Paper 1 Contour Paris 30k

low complexity

medium complexity

high complexity

0

50

100

150

200

250

Car Drops Paper 1 Countour Paris 30k

Ours 32x NVPR 8x

Rendering time (ms)

low complexity

medium complexity

high complexity

Left out of talk

• New algorithm for rendering with clip-paths

• Full SVG semantics, no stack or recursion

• Parallel pruning algorithm in preprocessing

• Eliminates occluded or clipped paths from cells

• Please see paper for other omitted details

Several ideas for future work
• Support for rational cubics (enable object-space warps)

• Support for mesh-based gradients

• Parallel stroke-to-fill conversion

• Transparency groups

• Subpixel rendering (e.g., ClearType)

• Raster effects over groups (e.g., Gaussian Blur)

• Different subdivision strategies (e.g, kd-tree)

• Port back to CPU with multi-threaded vector code

• Hardware implementation

Conclusions

• Fully parallel vector graphics rendering solution

• Interactive preprocessing times

• Unprecedented output quality

• Support for user-defined warps

• Best option for complex illustrations

• Source-code available

www.impa.br/~diego/projects/GanEtAl14/

http://www.impa.br/~diego/projects/GanEtAl14/

