
Marcus D. Hanwell

Robert Maynard

GTC, San Jose, CA

March, 2015

1

Visualization Toolkit:

Faster, Better, Open Scientific

Rendering and Compute

Accelerating Visualization with Partnerships

• NVIDIA and Kitware collaborate to bring

advances in scientific visualization

• Collaboration focuses

– In-site visualization

– Advanced rendering

• Improved use of NVIDIA GPUs

2

Kitware, Inc.
• Founded in 1998 by five former GE Research employees

• 98 current employees; 34 with PhDs

• Privately held, profitable from creation, no debt

• Offices

– Clifton Park, NY

– Carrboro, NC

– Santa Fe, NM

– Lyon, France

• 2011 Small Business

Administration’s Tibbetts

Award

• HPCWire Readers and

Editor’s Choice

• Inc’s 5000 List since

2008

Kitware’s customers & collaborators
Over 75 academic institutions
including…
• Harvard

• Massachusetts Institute of
Technology

• University of California, Berkeley

• Stanford University

• California Institute of Technology

• Imperial College London

• Johns Hopkins University

• Cornell University

• Columbia University

• Robarts Research Institute

• University of Pennsylvania

• Rensselaer Polytechnic Institute

• University of Utah

• University of North Carolina

Over 50 government
agencies and labs
including…
• National Institutes of Health (NIH)

• National Science Foundation
(NSF)

• National Library of Medicine (NLM)

• Department of Defense (DOD)

• Department of Energy (DOE)

• Defense Advanced Research
Projects Agency (DARPA)

• Army Research Lab (ARL)

• Air Force Research Lab (AFRL)

• Sandia (SNL)

• Los Alamos National Labs (LANL)

• Argonne (ANL)

• Oak Ridge (ORNL)

• Lawrence Livermore (LLNL)

Over 100 commercial
companies in fields
including…
• Automotive

• Aircraft

• Defense

• Energy technology

• Environmental sciences

• Finance

• Industrial inspection

• Oil & gas

• Pharmaceuticals

• Publishing

• 3D Mapping

• Medical devices

• Security

• Simulation

Kitware: Core Technologies

5

5

Business Model: Open Source

• Open-source Software

– Normally BSD-licensed

– Collaboration platforms

• Collaborative Research and Development

• Technology Integration

• Services, support, and consulting

• Training and webinars

6

Overview of Software Process

• Openly developed, reusable frameworks

– Open-source frameworks

– Developed openly

– Cross-platform compatibility

– Tested and verified

– Contribution model

– Supported by Kitware experts

• Liberally-licensed to facilitate research
7

The Visualization Toolkit

• Founded in 1993 as example

code for “The Visualization

Textbook”.

• Used in many projects

developed all over the world:

– ParaView, VisIt

– Osirix, 3D Slicer

– Mayavi, MOOSE

8

Going From Data to Visualization

9

VTK Visualizations

10

HPC Visualization

Large Displays and Virtual Reality

Mobile Visualization

Interactive Medical Application and

Visualization

VTK Architecture

• Hybrid approach

– Compiled C++ core (faster algorithms)

– Interpreted applications (rapid development)

– Interpreted layer generated automatically

11

C++

core

Interpreter

The Visualization Pipeline

• A sequence of algorithms that operate on

data objects to generate geometry

12

Source

Data

Data

Filter

Filter

Data

Data

Mapper

Mapper Actor

Actor

Render on

screen

VTK Organization

• Libraries with public APIs

• Cross-platform, open-source, for reuse

• Implementation modules use factories

– Rendering API uses OpenGL backend

– Core rendering does not link to/use OpenGL

13

Basic Library Hierarchy

14

vtkCommonCore

vtkRenderingCore

OpenGL OpenGL2

vtkFreeType

OpenGL OpenGL2

Legacy Rendering

• Based on OpenGL 1.1 APIs

– Optionally uses some extensions

• Heavy use of display lists for interaction

• A “Painter” API to enable custom rendering

– Virtual functions, switches, …

• In tight loops for all vertices, normals, colors, etc

15

Polygonal Rendering Rewrite

• New minimum OpenGL version

– OpenGL 2.1, OpenGL ES 2.0

• Rewrite to use minimal common subset

• Major overhaul of the rendering code

– Use VBOs, VAOs, shaders, “new” OpenGL

• Retain same high level API

16

Volume Rendering Rewrite

• Improve portability of GPU code

– Works well on Linux, Mac, and Windows

– Uses less extensions, more core GL 2.1+

• Refactored to compute more in shaders

• Replicates important features

• Easier to develop new techniques

17

Removing Old Calls

• Not using matrix stacks

• GLSL, using modern approaches

• Optional extensions detected at runtime

• Not a single glVertex call, highly batched

• Some data structures need further work

– vtkPolyData needs packed triangles

18

Performance Improvements

• In many cases now GPU bound

– Previously large systems CPU bound

• Large polygonal models >100x faster!

• Much more portable depth peeling

• Reduced memory footprint significantly

• Initial render times reduced

19

Performance: Old vs New

• Looking at static scenes

– Time to first render

– Average time of rotated subsequent renders

• Legacy rendering hits maximum size

– Memory errors/limits

– Only possible to compare smaller geometries

20

Benchmarking Tools (Polygonal)

• Added some new benchmarking tools

• Aim to provide systematic comparison

21

Time For First Frame (K6000)

0

2

4

6

8

10

12

14

16

1 million 5 million 20 million 30 million

Ti
m

e
 (

s)

Triangles

Legacy

Rewrite

22

Time for Subsequent Frames (K6000)

0

0.5

1

1.5

2

2.5

3

3.5

1 million 5 million 20 million 30 million

Ti
m

e
 (

s)

Triangles

Legacy

Rewrite

23

Rendering Speeds

• Two orders of magnitude faster!

• Legacy rendering maxes out at 30 million

– Not possible to compare above this

• Measured on a modern Linux system

– Same on Windows, and Mac

• Memory footprint about half for triangles

24

Comparison of Cards (Rewrite)

25

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 5 10 20 30 50 100 200

Tr
ia

n
gl

e
s

p
e

r
Se

co
n

d
 (

B
)

Number of Triangles (M)

K2200

K5200

K6000

Benchmarking Tools (Volume)

• Uses same framework as polygonal

• Volumes of increasing size

26

Time For First Frame (K40c)

27

0

5

10

15

20

25

10 million 50 million 100 million 500 million 1000 million

Ti
m

e
 (

s)

Voxels

Legacy

Rewrite

Time for Subsequent Frames (K40c)

28

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

10 million 50 million 100 million 500 million 1000 million

Ti
m

e
 (

s)

Voxels

Legacy

Rewrite

Mobile/Embedded

• New rendering can target ES 2.0+

• Some testing on Android and iOS

• Largely shared code with desktop code

• Simple multitouch interaction support

29

Custom Rendering

• Shaders can be overridden in mappers

• VBOs/IBOs created by reusable helpers

• Override the vtkMapper class

• Several examples of different rendering

– Glyphing, impostors, composite data

– Offer a reasonable starting point

 30

Porting/Using New Rendering

• Many applications just change backend
– VTK_RENDERING_BACKEND=OpenGL2

– Compile time option, with possible link change

– vtkRenderingOpenGL ->

 vtkRendering${VTK_RENDERING_BACKEND}

• Custom OpenGL will need to be ported

31

VTK-m Project Goals

• A single place for the visualization community to

collaborate, contribute, and leverage massively

threaded algorithms.

• Reduce the challenges of writing highly

concurrent algorithms by using data parallel

algorithms

VTK-m Project Goals

• Make it easier for simulation codes to take

advantage these parallel visualization and

analysis tasks on a wide range of current

and next-generation hardware.

VTK-m Architecture

In-Situ

Execution Data Parallel Algorithms Arrays

Post Processing

Worklets

DataModel

Filters

• Combines strengths of multiple projects:
– EAVL, Oak Ridge National Laboratory

– DAX, Sandia National Laboratory

– PISTON, Los Alamos National Laboratory

VTK-m Arbitrary Composition

• VTK-m allows clients to access different memory layouts through the
Array Handle and Dynamic Array Handle.

–Allows for efficient in-situ integration

–Allows for reduced data transfer

Control Environment Execution Environment
Transfer

Control Environment Execution Environment

VTK-m Arbitrary Composition

Point Arrangement

Cells Coordinates Explicit Logical Implicit

Structured

Strided   
Separated   

Unstructured

Strided   
Separated   

VTK-m

Data Set

• VTK-m allows clients to construct data sets from cell and point
arrangements that exactly match their original data

–In effect, this allows for hybrid and novel mesh types

functor()

Functor Mapping
Applied to Topologies

[Baker, et al. 2010]

functor()

Functor Mapping
Applied to Topologies

[Baker, et al. 2010]

What We Have So Far

• Features

– Core Types

– Statically and Dynamically Typed Arrays

– Device Interface (Serial, Cuda, TBB under

development)

– Basic Worklet and Dispatcher

What We Have So Far

• Compiles with
– gcc (4.8+), clang, msvc (2010+), icc, and pgi

• User Guide

• Ready for larger collaboration

2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz + NVIDIA Tesla K40c

Data: 1024^3 (floats)

17.28

30.2

1.514

0.524

0 5 10 15 20 25 30 35

Marching Cubes

VTK-m Cuda [No Transfer] VTK-m Cuda VTK-m Serial VTK Serial

2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz + NVIDIA Tesla K40c

Data: 1024^3 (floats)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

256^3 512^3 756^3 1024^3

Ti
m

e
 (

s)

Triangles

No Transfer

Transfer

Future Directions

• Make custom rendering easier

• Improved support for mobile

• Improved support for multitouch

• Extend approaches to the web

• Optionally use new features (OpenGL 4.4)

43

Coprocessing/In-situ

• Use of VTK and VTK-m

– Process data in place using VTK-m

– Visualize and analyze using VTK

• Bringing highly parallelized visualization

and analytics in science to all

• Create bridges between VTK and VTK-m

44

Thank You!

Marcus D. Hanwell

• mhanwell@kitware.com

• @mhanwell

• +MarcusHanwell

Robert Maynard

• robert.maynard@kitware.com

• @robertjmaynard

45

Please complete the Presenter Evaluation sent to you by email or

through the GTC Mobile App. Your feedback is important!

Checkout out Kitware @ www.kitware.com and VTK @ www.vtk.org

mailto:mhanwell@kitware.com
mailto:robert.maynard@kitware.com
http://www.kitware.com
http://www.vtk.org

