GPU Computing:
A VEX Plugin Developer's Perspective

Stephen Bash, GenArts Inc.
GPU Technology Conference, March 19, 2015

= Sapphire launched in 1996 for Flame on IRIX, now works with over 20 digital video
packages on Windows, Mac, and Linux

= Award winning collection of over 250 effects

= Effects composed from library of hundreds of algorithms: blur, warp, FFT, lens flare, ...
Algorithms implemented in both C++ and CUDA
... and both must produce visually identical results

S_WarpPolar
S_Distort
S_BlurMotion
S_TextureFlux

Outline

= Introduction
= What's a plugin?
- Why CUDA?

« CUDA programming for plugins
= What works...
= ... and what doesn’t
= Tips and tricks for living in someone else’s process
= Context management
= Direct GPU transfer
= Library linking

Summary

Introduction

= Shared library / DLL / loadable bundle
= API specified by host (program loading the plugin)
= Creates opportunity for third party to add features and value to host

Host

Plugin

Operating System

Hardware

‘G—E—N—A—R—'F—@

= Plugin shares host’s process and resources
= Plugin errors can affect host

= Plugin may need to be reentrant and thread safe
Lock discipline extremely important
Requires careful memory management

= Plugin usually dependent on host for persistence

Host

Plugin

Operating System

Hardware

= Plugin must accept/support the host’s system requirements

‘G—E—N—A—R—'F—@

= VFX artists require high quality renders with interactive performance
Visual artist’s efficiency depends on seeing the result quickly
= VFX projects are getting bigger
DVD 480p = 119 MB/sec
HD 1080p = 746 MB/sec
The Hobbit 5k stereo = 16.6 GB/sec! ity
= Interesting effects are complex
Lens flares with hundredsp of elements 720p 1080p 2K
Automated skin detection and touch up
Complex warps with motion blur
Footage retiming

= CUDA enables interactive effects via powerful GPUs

1
CPU
¢

0
ool 2003 2005 2007 2009 2011 2013

¢ ENARrTO

CUDA for VFEX Plugins

= CUDA provides significant speed gains for » = Sandy Bridge i7 = Quadro K6000
our effects

100

= CUDA is OS-independent

= Cost effective performance for customers
= Cheaper and easier to upgrade GPU
= Hosts are beginning to support direct GPU *®
transfer of images N |

S_TexturePlasma S_Lensflare S_WarpBubble S_BlurMotion

Frames per Second*
[=1] =]
o o

-
o

* Plugin only performance rendering 1080p

‘G—E—N—A—R—T—g 9

Long running kernels cause Windows to reset driver
= Reset can break/crash host

NVidia cards are scarce in Macs

GPU sharing with host is relatively undocumented
= Many hosts monopolize GPU resources

Host APIs lack tools to coordinate over multiple GPUs

The application must close.

Error code: 7
Would you like to visit

I"'_"‘-.I The NVIDIA OpenGL driver lost connection with the display
S driver due to exceeding the Windows Time-Out limit and is unable to
continue.

Provide CPU fallback for all effects
= A ssingle black frame can ruin a long project
« Also allows heterogeneous render farms

Implementations can differ, but results
have to visually match

Test infrastructure keeps us honest

Example: S _EdgeAwareBlur

= Preprocessor stores result differently on
CPU and GPU

= Three different blur implementations

= Final results are not numerically identical,
but are visually indistinguishable

// Try to execute on GPU
bool render_cpu = true;
if (supports_cuda(gpu_index)) {
if (execute_effect_internal(gpu=true, ...))
render_cpu = false; // GPU render succeeded

}

// Execute on CPU

// If GPU render failed, this will retry on CPU

if (render_cpu)
execute_effect_internal(gpu=false, ...);

CPU/GPU
Error*

FCPUResult” |
N

é

1.00000

* Color enhanced to show detail

NP RTO 1

Tips and Tricks

12

Host might use CUDA
= Need to isolate plugin errors (e.g. unspecified launch failure) from host

CUDA contexts are analogous to CPU processes and isolate memory allocations,
kernel invocations, device errors, and more

Plugin can use the driver API to create its own context and perform all operations
in that private context

Library Initialization Call
cuCtxCreate) —P ﬂ'ﬁfgf —3) cuCtxPopCurrent()
Library Call

cuCtxPushCurrent() —p mll:ts:ﬂ —» cuCtxPopCurrent()

Library context management
CUDA 6.5 Programming Guide, Appendix H

NP RTO 13

Requires use of driver API

To support running on machines with
different driver versions, load driver
at runtime rather than linking it

directly
= On Mac weak link the CUDA
framework

If an error occurs, destroying context
will free plugin’s GPU memory and
reset device to non-error state

// Persistent state
static CUcontext cuda_context = NULL;
static CUdevice cuda_device = -1; // initialized elsewhere

CudaContext: :CudaContext(bool use gl context) {
if (!cuda _context) { // Create new context
if (use_gl context)
cuGLCtxCreate(&cuda_context, 0, cuda device);
else
cuCtxCreate(&cuda_context, 0, cuda device);

}

cuCtxPushCurrent(cuda_context);

}

CudaContext: :~CudaContext() {
cuCtxPopCurrent(NULL);

}

Direct GPU transfer

CPU Memory GPU Memory

— i Plugin
Context

@ Host
D

Naive GPU-accelerated host copies data back to CPU memory for plugin

Direct GPU transfer

GPU Memory

Plugin
Context
Host OpenGL
|::> Context
Data

« Naive GPU-accelerated host copies data back to CPU memory for plugin

= OpenGL is the cross-platform solution for sharing between multiple GPU languages
May require extra memory copies if host isn’t natively OpenGL
OpenGL/CUDA interop on Mac is really slow

Direct GPU transfer: CUDA to CUDA

= Multiple (_)ptlons for transferring data when both host GPU Memory GPU Memory
and plugin use CUDA:
= cuMemcpyPeer (driver API) Plugin i Plugin
- cudaMemcpy (runtime API) Context Context
= Custom kernel
Host Host
)) _ Context Context
= Still exploring CUDA/CUDA transfers with hosts
Host to Plugin Plugin to Host
Host to Plugin Bandwidth (GB/s) Plugin to Host Bandwidth (GB/s)
Windows Windows 29598 59.82 53.98
Mac 2.27 2.19 54.57 Mac 60.47 60.93 54.48
Linux 4.55 4.53 55.75 Linux 63.05 63.05 55.79

Results from Quadro K5000

e E NP R TO 17

= Running in host’s process means dynamic loader sees host’s dependent libraries before
plugin
= Plugin may get a different version of library or symbol than it expects
= Library/symbol conflicts manifest in many (usually strange) ways

= On Windows: use (private) side-by-side assemblies to get the correct library

= On Mac and Linux: statically link CUDA runtime (as of CUDA 5.5)

= To avoid conflicts you must instruct 1d to hide resolved global symbols and strip the final result
Mac: See 1d -exported symbols 1list and -unexported _symbols list (only one is necessary)
Linux: See linker scripts (http://stackoverflow.com/a/452955)

= CUFFT and CUBLAS can be statically linked as of CUDA 6.5
Device link required to statically link CUFFT

nvcc -dlink or nvlink takes any number of static libraries/object files and produces a single object
file to include in the final traditional link

‘G—E—N—A—R—'F—@ 18

Summary

19

= CUDA has a lot of benefits for plugin developers

= As a plugin or host developer, think about resource sharing with the other
Context management
Direct GPU transfers
Library loading (or static linking)
Error handling and communication

= Please complete the Presenter Evaluation sent to you by email or through the
GTC Mobile App. Your feedback is important!

Stephen Bash
stephen@genarts.com

‘G—E—N—A—R—'F—@ 20

S_WarpPolar
S _Distort
S_BlurMotion
S_TextureFlux

