
BLINK: A GPU-Enabled Image Processing

Framework

Mark Davey

Lead HPC Engineer

The Foundry

The Foundry and HPC

• The Foundry
– Founded in 1996
– We develop award-winning visual effects, computer

graphics and design software used globally by leading
artists and designers

• HPC
– We create frameworks to make best use of all available

compute devices – “make things go faster”
– Initial target: 2D Image Processing

2D Image Processing

• A fundamental component in many Foundry products.
 Used in such effects as:

• Noise reduction

• Keying

• Motion and disparity estimation

• Colour correction/grading

• Panoramic stitching

• 3D texture creation

Need to make it as fast as possible!

Moving to GPUs

• Traditionally used the CPU for image processing

• Lots of legacy code

• GPUs are great at image processing

• Our customers often have powerful GPUs but not always (e.g.
render farms)

• Need a fallback CPU path

• Do not want to write same code multiple times
(debugging, maintenance, new hardware, etc.)

The Solution - BLINK

• “Write once, deploy everywhere”

• Image processing algorithms expressed as kernels

• Kernels written in a C++ like, domain-specific language

• Kernels run over an iteration space

• Metadata expresses access patterns, image formats, boundary

conditions, etc.

• Kernels are translated into different back-ends

• JIT Compilation for many paths

BLINK - Features

• Multiple back-ends supported

• Consistent results across devices

• Range of image formats and layouts available

• Kernel execution strategy left to framework

• Profiling (execute and transfer)

BLINK Back-ends

• CUDA (4.2, Compute Capability 2.0)

• OpenCL (1.1)

• GLSL (1.2)

• x86 (Scalar, SSE2, SSE4.1, AVX, AVX2)

BLINK Example
 class GainImage: ImageComputationKernel<eComponentWise>

 {

 param:

 Image<eRead, ePoint> src;

 Image<eWrite, ePoint> dst;

 float gain;

 void define(){

 defineParam(gain, “myGain” , 1.0f);

 }

 void process(){

 dst() = src() * gain;

 }

 };

BLINK Example
 class GainImage: ImageComputationKernel<eComponentWise>

 {

 param:

 Image<eRead, ePoint> src;

 Image<eWrite, ePoint> dst;

 float gain;

 void define(){

 defineParam(gain, “myGain” , 1.0f);

 }

 void process(){

 dst() = src() * gain;

 }

 };

BLINK Example
 class GainImage: ImageComputationKernel<eComponentWise>

 {

 param:

 Image<eRead, ePoint> src;

 Image<eWrite, ePoint> dst;

 float gain;

 void define(){

 defineParam(gain, “myGain” , 1.0f);

 }

 void process(){

 dst() = src() * gain;

 }

 };

BLINK - The Foundry

Nuke – Post Production Compositing Software
• Many key plug-ins written using BLINK

• BlinkScript

– Customers can create kernels within Nuke for GPU and CPU

– Multi-GPU support on selected configurations

• OCULA 4 – Stereoscopic Toolset

Projects
• ASAP – A Scalable 2D/3D Architecture for Cross Media Virtual Production

• Dreamspace – Advancements in Virtual Production Frameworks

OCULA

• A collection of Nuke tools to handle stereoscopic imagery

• Vector Disparity Generator at its heart

– Correct colour and focus, automatically correct alignment,

retime

• Latest version (4) written using BLINK

• Over 12K kernel calls per frame!

OCULA 4 – Disparity Generation

OCULA 4 – Different Devices

Numerical Identity I

• Our customers need visually identical results when
processing on different devices.

• Some algorithms are extremely sensitive to small
differences in mathematical results (e.g. OCULA!)

• Need to ensure numerical identity to guarantee visual
identity

Numerical Identity – General Overview
• Disable fast math - to prevent compiler from reordering math operations.

• Force floating point literals to single precision - different compilers treat double literals

differently giving inconsistent results.

• Disable Fused-Multiply-Add (FMA)

• Implement unified math library for all code paths

– Algebraic functions sqrt, hypot …
– Transcendental functions sin, exp …
– Integral rounding functions ceil, floor …
– IEEE standard functions fmod, fabs …
– Matrices and operators transpose, inverse …
– Vectors and operators dot, cross …
– Others min, max …

Numerical Identity – Platform Specifics

CUDA (nvcc flags)

• Disable “Flush Denormals To Zero” (--ftz=false)

• Disable “Fused Multiply Add” (--fmad=false)

• Enable precise square root and divide (--prec-sqrt=true --prec-div=true)

CPU:

• Precisely control FPU control register for rounding, denormal handing, etc
(using _mm_setcsr intrinsic)

• Implement vector types (float1..float4, int1..int4,...)

Also supported for OpenCL (NVIDIA GPUs only)

OCULA 4 - Results

• Disparity generation

• 3.3MPixel (2560x1350) frames

• End-to-end processing cost

• Only 5% overhead for Numerical Identity

• Many kernels are memory bound
0

1

2

3

4

5

6

7

8

9

K5000 - Unified Math K5000 - Optimised

Ti
m

e
(s

)

OCULA 4 -Disparity - 3.3MPixel - Unified Math

OCULA 4 - Results

0

5

10

15

20

25

30

35

CPU - 2x 6-Core Xeon K5000 - Unified Math K5000 - Optimised

Ti
m

e
(s

)

Ocula 4 Disparity - 3.3MPixel Stereo

~ 5 times faster on the GPU
… and more speed to come!

Under Development…Examples

• Heterogeneous Compute
– Run graphs of kernels using scheduler
– Target all available compute devices
– Target data parallelism

• BLINK for Real-time
– Export BLINK graphs from Nuke to run in BLINKPlayer
– Kernels can be modified in BLINKPlayer
– Parameters can be introspected from kernels and presented as GUI

widgets
– Composite live and rendered imagery

Thank You

Questions?

