Mark Davey
Lead HPC Engineer
The Foundry

The Foundry and HPC

I
* The Foundry

— Founded in 1996 e

— We develop award-winning visual effects, computer
graphics and design software used globally by leading
artists and designers

* HPC

— We create frameworks to make best use of all available
compute devices — “make things go faster”

— Initial target: 2D Image Processing

THE
FOUNDRY.

2D Image Processing
-

* A fundamental component in many Foundry products.
Used in such effects as:

* Noise reduction

* Keying

* Motion and disparity estimation
* Colour correction/grading

* Panoramic stitching

* 3D texture creation

Need to make it as fast as possible!

THE
FOUNDRY.

Moving to GPUs

-
Traditionally used the CPU for image processing

Lots of legacy code
GPUs are great at image processing

Our customers often have powerful GPUs but not always (e.g.
render farms)

Need a fallback CPU path

Do not want to write same code multiple times
(debugging, maintenance, new hardware, etc.)

THE
FOUNDRY.

The Solution - BLINK
-
“Write once, deploy everywhere”

Image processing algorithms expressed as kernels
Kernels written in a C++ like, domain-specific language
Kernels run over an iteration space

Metadata expresses access patterns, image formats, boundary
conditions, etc.

Kernels are translated into different back-ends

JIT Compilation for many paths

THE
FOUNDRY.

BLINK - Features

Multiple back-ends supported

Consistent results across devices

Range of image formats and layouts available
Kernel execution strategy left to framework

Profiling (execute and transfer)

THE
FOUNDRY.

BLINK Back-ends

CUDA (4.2, Compute Capability 2.0)
OpenCL (1.1)
GLSL (1.2)

X86 (Scalar, SSE2, SSE4.1, AVX, AVX2)

THE
FOUNDRY.

BLINK Example

I
class Gainlmage: ImageComputationKernel<eComponentWise>

{
param:
Image<eRead, ePoint> src;
Image<eWrite, ePoint> dst;
float gain;

void define(){
defineParam(gain, “myGain” , 1.0f);

}

void process(){
dst() = src() * gain;
}
I

THE
FOUNDRY.

BLINK Example

-
class Gainlmage: ImageComputationKernel<eComponentWise>

{
param:
Iniage<eRead, ePoint> src;
Inlage<eWrite, ePoint> dst;
float gain;

void define(){
defineParam(gain, “myGain” , 1.0f);

}

void process(){
dst() = src() * gain;
}
I

THE
FOUNDRY.

BLINK Example

I
class Gainlmage: ImageComputationKernel<eComponentWise>

{
param:
Image<eRead, ePoint> src;
Image<eWrite, ePoint> dst;
float gain;

void define(){
defineParam(gain, “myGain” , 1.0f);

}

\ oid process(){
dst() = src() * gain;
}
I

THE
FOUNDRY.

BLINK - The Foundry
- ——
Nuke — Post Production Compositing Software
* Many key plug-ins written using BLINK
* BlinkScript
— Customers can create kernels within Nuke for GPU and CPU
— Multi-GPU support on selected configurations

* OCULA 4 - Stereoscopic Toolset

Projects
* ASAP — A Scalable 2D/3D Architecture for Cross Media Virtual Production
* Dreamspace — Advancements in Virtual Production Frameworks

THE
FOUNDRY.

OCULA

e
A collection of Nuke tools to handle stereoscopic imagery

Vector Disparity Generator at its heart

— Correct colour and focus, automatically correct alignment,

retime

Latest version (4) written using BLINK

Over 12K kernel calls per frame!

THE
FOUNDRY.

OCULA 4 — Different Devices

THE
FOUNDRY.

Numerical Identity |
-

Our customers need visually identical results when
processing on different devices.

Some algorithms are extremely sensitive to small
differences in mathematical results (e.g. OCULA!)

Need to ensure numerical identity to guarantee visual
identity

THE
FOUNDRY.

Numerical Identity — General Overview

-
Disable fast math - to prevent compiler from reordering math operations.

Force floating point literals to single precision - different compilers treat double literals
differently giving inconsistent results.

Disable Fused-Multiply-Add (FMA)

Implement unified math library for all code paths

— Algebraic functions sqgrt, hypot ...

— Transcendental functions sin, exp ...

— Integral rounding functions ceil, floor ...

— |EEE standard functions fmod, fabs ...

— Matrices and operators transpose, inverse ...
— Vectors and operators dot, cross ...

— Others min, max ...

THE
FOUNDRY.

Numerical Identity — Platform Specifics
-
CUDA (nvcc flags)
* Disable “Flush Denormals To Zero” (--ftz=false)
* Disable “Fused Multiply Add” (--fmad=false)
* Enable precise square root and divide (--prec-sqrt=true --prec-div=true)

CPU:

e Precisely control FPU control register for rounding, denormal handing, etc
(using _mm_setcsr intrinsic)

* Implement vector types (floatl..float4, intl..int4,...)

Also supported for OpenCL (NVIDIA GPUs only)

THE
FOUNDRY.

| OCULA 4 - Results \

Only 5% overhea

Many kernels are memory k

K5000 - Unified Math K5000 - Optimised

THE :
FOUNDRY.

OCULA 4 - Results

CPU - 2x 6-Core Xeon K5000 - Unified Math K5000 - Optimised

THE .

Under Development...Examples

B e
* Heterogeneous Compute

— Run graphs of kernels using scheduler
— Target all available compute devices
— Target data parallelism

e BLINK for Real-time
— Export BLINK graphs from Nuke to run in BLINKPlayer
— Kernels can be modified in BLINKPlayer

— Parameters can be introspected from kernels and presented as GUI
widgets
— Composite live and rendered imagery

THE
FOUNDRY.

Thank You

THE

