# Distributed Optimization of CNNs and RNNs GTC 2015

William Chan williamchan.ca williamchan@cmu.edu



# **Carnegie Mellon University**

March 19, 2015

# Outline

- 1. Motivation
- 2. Distributed ASGD
- 3. CNNs
- 4. RNNs
- 5. Conclusion



# Motivation

Why need distributed training?



# Motivation

- More data  $\rightarrow$  better models
- More data  $\rightarrow$  longer training times

#### Example: Baidu Deep Speech

- Synthetic training data generated from overlapping noise
- $\blacktriangleright$  Synthetic training data  $\rightarrow$  unlimited training data



# Motivation

- Complex models (e.g., CNNs and RNNs) better than simple models (DNNs)
- Complex models  $\rightarrow$  longer training times

Example: GoogLeNet

22 layers deep CNN



# GoogLeNet





► Google Cats, DistBelief, 32 000 CPU cores and more...



Figure 1: Google showed we can apply ASGD with Deep Learning.



- CPUs are expensive
- PhD students are poor : (
- Let us use GPUs!



Stochastic Gradient Descent:

$$\theta = \theta - \eta \nabla \theta \tag{1}$$

Distributed Asynchronous Stochastic Gradient Descent:

$$\theta = \theta - \eta \nabla \theta_i \tag{2}$$



#### CMU SPEECH3:

- ► x1 GPU Master Parameter Server
- ×N GPU ASGD Shards





Figure 2: CMU SPEECH3 GPU ASGD.



SPEECH3 ASGD Shard  $\leftrightarrow$  Parameter Server Sync:

- Compute a minibatch (e.g., 128).
- If Parameter Server is free, sync.
- Else compute another minibatch.

- Easy to implement, < 300 lines of code.
- Works surprisingly well.



Minor tricks:

- Momentum / Gradient Projection on Parameter Server
- Gradient Decay on Parameter Server
- Tunable max distance limit between Parameter Server and Shard.



# CNNs

Convolutional Neural Networks (CNNs)

- Computer Vision
- Automatic Speech Recognition
- ► CNNs are typically ≈ 5% relative Word Error Rate (WER) better than DNNs







Figure 3: CNN for Acoustic Modelling.



#### $\mathsf{CNNs}$



Test Frame Accuracy vs. Time

# $\mathsf{CNNs}$

| Workers | 40% FA       | 43% FA       | 44% FA        |
|---------|--------------|--------------|---------------|
| 1       | 5:50 (100%)  | 14:36 (100%) | 19:29 (100%)  |
| 2       | 3:36 (81.0%) | 8:59 (81.3%) | 11:58 (81.4%) |
| 3       | 2:48 (69.4%) | 5:59 (81.3%) | 7:58 (81.5%)  |
| 4       | 2:05 (70.0%) | 4:28 (81.7%) | 6:32 (74.6%)  |
| 5       | 1:40 (70.0%) | 3:49 (76.5%) | 5:43 (68.2%)  |

Table 1: Time (hh:mm) and scaling efficiency (in brackets) comparison for convergence to 40%, 43% and 44% Frame Accuracy (FA).



#### **RNNs**

Recurrent Neural Networks (RNNs)

- Machine Translation
- Automatic Speech Recognition
- $\blacktriangleright$  RNNs are typically  $\approx$  5-10% relative WER better than DNNs

Minor Tricks:

- Long Short Term Memory (LSTM)
- Cell activation clipping







Figure 5: DNN vs. RNN.



#### RNNs

| Workers | 46.5% FA     | 47.5% FA     | 48.5% FA    |
|---------|--------------|--------------|-------------|
| 1       | 1:51 (100%)  | 3:42 (100%)  | 7:41 (100%) |
| 2       | 1:00 (92.5%) | 2:00 (92.5%) | 3:01 (128%) |
| 5       | -            | -            | 1:15 (122%) |

Table 2: Time (hh:mm) and scaling efficiency (in brackets) comparison for convergence to 46.5%, 47.5% and 48.5% Frame Accuracy (FA).

RNNs seem to really like distributed training!



### **RNNs**

| Workers | WER  | Time  |
|---------|------|-------|
| 1       | 3.95 | 18:37 |
| 2       | 4.11 | 8:04  |
| 5       | 4.06 | 5:24  |

Table 3: WERs.

#### No (major) difference in WER!



# Conclusion

- Distributed ASGD on GPU, easy to implement!
- Speed up your training!
- Minor difference in loss against SGD baseline!

