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Introduction

» Voice interfaces a core technology for User Interaction
« Mobile devices, Smart TVs, In-Vehicle Systems, ...

« For a captivating User Experience, Voice Ul must be:
 Robust
* Acoustic robustness -> Large Acoustic Models
« Linguistics robustness -> Large Vocabulary Recognition
« Responsive
* Low latency - Faster than real-time search
- Adaptive
« User and Task adaptation
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Introduction

« Large models critical for accurate speech recognition:
« Large acoustic models =» Tens of Millions of parameters

« Large vocabulary = Millions of words

« Large language model =» Billions of n-gram entries (>= 20GB)

 Examples include:

Acoustic modeling for telephony Mass 20141 or Youtube [Bacchiani 2014]
 ~200M parameter Deep Neural Networks

Language model rescoring for Voice Search [Schalkwyk 2010]
* 1.2M vocabulary, 5-gram LM, 12.7B n-gram entries
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Introduction

e 1 Million Vocabulary (3-gram)
* 30 Million parameter Deep Neural Network

e

>
NVIDIA.

TEGRA

Tesla K40 Titan X Tegra K1 Tegra X1

Kepler, 2880 cores Maxwell, 3072 cores Kepler, 192 cores Maxwell, 256 cores

RTF 0.02 0.01 0.17 0.14
XRT 50X 100X 6X X

1hour 72s 36s 612s 504s



Background

Weighted Finite State Transducers (WFSTs)
in Speech Recognition



Carnegie Mellon University

WEFST in Speech Recognition
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“Recognize speech” v.s. “Wreck a nice beach’...
« Search is performed in 3 phases.
Phase 0: Active Set Preparation.

Phase 1: Acoustic Score Computation.
Phase 2: WFST Search. 8
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WEFST in Speech Recognition
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 Phase 0: Active Set Preparation
« Collect active hypotheses from previous frame.
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WEFST in Speech Recognition
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 Phase 1: Acoustic Score Computation
« Compute acoustic similarity between given speech and phonetic models
using Deep Neural Network
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WEFST in Speech Recognition
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 Phase 2: WFST Search
« Perform frame synchronous Viterbi beam search on WFST network.
« If multiple transitions have same next state s, then the most likely (minimum score)

hypothesis is retained (i.e. state 12, 14, 15...)
1"
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WEFST in Speech Recognition
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« lterate these 3 phases until input audio ends.
Phase 0: Active Set Preparation

12



Carnegie Mellon University

WEFST in Speech Recognition
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* Phase 1: Acoustic Score Computation
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WEFST in Speech Recognition
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WEFST in Speech Recognition
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* Phase 0: Active Set Preparation
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WEFST in Speech Recognition
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* Phase 1: Acoustic Score Computation
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WEFST in Speech Recognition
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WEFST in Speech Recognition
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« Recognized result is an output symbol sequence over the best path.
* Result: “RECOGNIZE SPEECH”
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Proposed Approach

GPU-Accelerated Scalable DSR
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Distributed Speech Recognition (DSR)
&

(0) Iteration control, (1) Extract features (2) Stack incoming (3) Conduct Viterbi (4) Send result back
data preparation, from active audio- frames from active beam search over over TCP/IP, Data-
result handling. streams into stacked audio-streams and WEFST and conduct collection.
feature vector compute likelihoods on-the-fly rescoring

Audio-Stream —>| Iteration Control = | Feature Extraction [ Ac?:\:;::izf > GraphSearch |=>| PostProcessing |—> Update hyp.

* [Jteration control * Acoustic score computation
* Allocate or deallocate data structures. * Deep Neural Network (Forward Propagation).
¢ Terminate decoding task. * Graph search
 Feature extraction * Conduct frame synchronous WFST search.
* Receive audio and extract feature for * End-of-utterance detection.
current iteration (batch). e Post processing
e Speaker dependent adaptation. - Output (Lattice) processing.

e Sending result back to client.
20
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Producer/Consumer design pattern

Server

Connect

Requests & Replies

\—
V————
—

Producer-Consumer multi-threaded model

Master/Slave pattern.
Decuple processes that produce and

consume data at different rates.

Advantages:
* Enhanced data sharing
* Processes can run in different speeds.
e Buffered communication between
processes.

21
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Architecture 1 (Naive)

&

(0) Iteration control, (1) Extract features (2) Stack incoming (3) Conduct Viterbi (4) Send result back
data preparation, from active audio- frames from active beam search over over TCP/IP, Data-
Producer thread result handling. streams into stacked audio-streams and WFST and conduct collection.
feature vector compute likelihoods on-the-fly rescoring
] 3
Audio-Stream 1 (A,) —> lteration Control —?i Feature Extraction [ ?:;;Zi:;zze —> Graph Search —>|  Post Processing (> Update hyp. (H,)
/’ Consumer thread \ %

/ \' Consumer thread (Tll)

. Acoustic Score .
Feature Extraction . Graph Search Post Processing
Computation

Audio-Stream N (Ay) Update hyp. (Hy)

,______—
S

Consumer thread (T,)

QUEUE QUEUE

Shared data DFFT Transform Acoustic Model Decoding Graph
structures and models And Filterbanks Language Model
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Architecture 1 (Naive)

°* Pros.

* Maximum decoding performance.
e Simple thread management.

* Cons.

* Low throughput and GPU utilization if batch size is small.

* Number of consumer threads can be limited by GPU (by maximum
inflight kernels)

* Not suitable for many CPU + single GPU configuration.

23
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Architecture 2

&

(0) Iteration control, (1) Extract features (2) Stack incoming (3) Conduct Viterbi (4) Send result back
data preparation. from active audio- frames from active beam search over over TCP/IP, Data-
Producer threads streams into stacked audio-streams and WFST and conduct collection.
feature vector compute likelihoods on-the-fly rescoring
Audio-Stream 1 (A,) ! Iteration Control —% Feature Extraction —? Acoustic Stfore > Graph Search "P Post Processing 2 Update hyp. (H,)
1 Computation
i Consumer thread 4} Consumer thread 1 Consumer thread Consumer thread
i Consumer thread \
A
Acoustic Score
C . Graph Search
omputation
Consumer thread
Consumer thread
/4
Audio-Stream N (A,) Graph Search Update hyp. (Hy)
Consumer thread
A
QUEUE QUEUE QUEUE QUEUE
Shared data DFFT Transform Decoding Graph
. A ic Model
structures and models And Filterbanks coltpne Language Model
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Architecture 2

* Pros.
* More scalable and configurable structure.
e (Can assign more threads to bottleneck phase.
* interleaving frames from multiple tasks.
* Can achieve maximum utilization of GPU.

* Cons.

* Complex threads configuration.
* More queuing overheads
* Expected relatively higher latency compared to “structure 1”

Carnegie Mellon University
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Evaluation Results
GPU-Accelerated Scalable DSR
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Evaluation Setup

* Language Model:
e 1 Million Vocab. 3-gram (10.1M n-gram)
* Acoustic Model:
« DNN: (in) 253 X 2048 X 2048 X 2048 X 2048 X 2048 X 3432 (out)
* Feature type:
« 23t Filterbank coefficient with CMVN
e Evaluation Set:
« WSJ eval92 (20K, 333 utts.)
* Platform:
e Corei7-2600K + NVIDIA Tesla K40
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Evaluation Results
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WER: 6.7%
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0 5 10 15 20 25 27 30

Number of Clients (Concurrent Access)

|

35 40

* GPU only configuration (G1, G2): 1 Tesla K40.
e Architecture 2 improves speed by 0.24 RTF (N=35)

*  “Architecture 2” processes 35 concurrent audio streams in real-time.

Iteration control 1 1
ASR decoder 2 0
Feature extraction 0 1
Acoustic score comp. 0 1*
Graph search 0 2*
Post processing 0 2
* use GPU

28
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Evaluation Results
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* Hybrid configuration (H2): 1 GPU + 2 CPU (16 cores).
*  “Architecture 2” processes 80 concurrent audio streams in real-time.
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Conclusion
GPU-Accelerated Scalable DSR
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Conclusions

* Proposed scalable and configurable DSR server architecture.
* “Architecture 2” was able to process ...

* 40 concurrent audio streams in real-time with 1 GPU (K40c)
e 80 concurrent audio streams in real-time with 1 GPU + 16 CPU cores.

* Performance can be improved further

* Lock-free task queue.
* Optimal / Adaptive Thread configuration.
* Smart task scheduling.

31
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Q&A

Thank you for your attention.



