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What we simulate? 

• Extremely hot plasma (several hundred million degree) confined by very 
strong magnetic field 

• Turbulence: What cause the leakage of energy in the system? 
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• Mathematics: 5D gyrokinetic Vlasov Poisson equation 
 

• Numerical method: Gyrokinetic Particle-in-cell (PIC) method 
 
 
 
 
 
 

                        
 

131 million grid points, 30 billion particles, 10 thousand time steps 
 

• Objective: Develop an efficient numerical tool to reproduce 
and predict turbulence and transport in tokamak using high 
end supercomputers  
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PIC method 

• The system is represented by a set of particles 
• Each particle carries several components: position, velocity and weight (x, v, w) 
• Particles interact with each other through long range electromagnetic forces 
• Naively, forces are calculated pairwise ~ O(N2) computational complexity 

– Intractable with million or billion number of particles 
– Fast Multiple Method (FMM) ~ O(NlogN)  

• Alternatively, forces are evaluated on a grid and then interpolated to the particle ~ O(N+MlogM) 
(N/M=100-10,000) 

• PIC approach involves two different data structures and two types of operations 
– Charge: Particle to grid interpolation (SCATTER) 
– Poisson/Field:  Poisson solve and field calculation 
– Push: Grid to particle interpolation (GATHER) 

 



Particle-grid interpolation  



Gyrokinetic PIC method 

• Each particle is a charge ring that varies in size 

• Particle-grid interpolation is through 4 points on the ring 

• Each particle accesses up to 16 unique grid memory locations in 2D plane (increase 
cache working set) 
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The history of GTC-P code  

GTC-P C (Wang etc, SC1) 

2D domain decomposition Particle decomposition 

GTC C ( Madduri etc., SC09,SC11) 

1D domain decomposition Particle decomposition 

GTC-P Fortran (Ethier and Adams, 2007) 

2D domain decomposition 

GTC Fortran (Lin etc. Science, 1998) 

1D domain decomposition Particle decomposition 

All codes share the exact same physics model, e.g., 
electrostatic, circular cross-section 



GTC-P: six major subroutines 

Charge 

Smooth 

Poisson 

Field 

Push 

Shift 

• Charge: particle to grid 
interpolation (SCATTER) 

• Smooth/Poisson/Field: 
grid work (local stencil) 

• Push: 
• grid to particle 

interpolation (GATHER) 
• update position and 

velocity 
• Shift: in distributed 

memory environment, 
exchange particles among 
processors 
 



GPU Implementations - Charge 

• Challenges 
– High memory bandwidth to stream data requires changing the data layout 
– Small memory to core ratio restricts the use of memory replication to avoid data hazards 
– Random memory access -- small cache capacity makes it difficulty to exploit locality to avoid expensive memory access 

 
• First Attempt 

– Use SoA data structure – stream data access 
– Use global atomics – non coalesced  

 
• Second Attempt  

– Use cooperative computation to capture locality for co-scheduled threads – use global atomics, but in a coalesced way (by 
transposing in shared memory) 

– Leads to relatively poor performance on Fermi, but great performance on Kepler  
 

• Third Attempt  
– Explored different techniques for explicit management of the GPU shared memory – shared memory atomics  
– Leads to good performance on Fermi (where DP atomics operation is expensive), but relative poor performance on Kepler (because 

it enabled fast DP atomic increment while preserves the same amount of shared memory as Fermi) – extensive shared memory 
usage 

 



GPU Implementations - Push 

• Challenge 
– Random memory access 

• Optimizations Attempts 
– Redundantly re-compute values rather than load from memory 
– Use loop/computation fusion to further reduce memory usage for 

auxiliary arrays 
– Use GPU texture memory for storing electric field data 



GPU Implementations - Shift 

• First Attempt 
– Maintain small shared buffer that are filled as it traversed its subset of the particle array – extensive 

shared memory usage 
– Particle are sorted into three buffers for left, right shift and keep buffer 
– Whenever the local buffer is exhausted, the thread automatically reserve a space in a pre-allocated 

global buffer 
– Transpose data while flush to global memory – normal shift algorithm on CPU use AoS data 

structure  - data transpose 
 

• Second Attempt 
– Shift and sort are simultaneously executed  
– Particles are sorted into three buffers, left, right shift and keep buffer, relying on fast Thrust lib – no 

shared memory usage 
– Modify the normal iterative shift algorithm to pass message with SoA data structure – no data 

transpose  
 

 



Single Node Results  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CPU GPU

new shift

cooperative

sorting

original

Sp
e

ed
 u

p
 r

el
at

iv
e 

to
 b

as
e

lin
e

 C
P

U
 v

er
si

o
n

 

• Double Precision 
• ECC enables 
• Intel Xeon E5-2670 vs. NVIDIA 

Tesla K20x (Piz Daint) 
• Speed up ~1.7x 
 



Experimental Platforms 



Performance Evaluation (Weak Scaling) – 

One Process Per NUMA Node 



Performance Evaluation – 

One Process Per NUMA Node 
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Conclusion 

• Performance of the CPU-based architectures is generally 

correlated with the DRAM STREAM bandwidth per NUMA 

node; Large size plasma simulations on CPU suffer from 

cache misses issue. 

• On GPU, substantial speed up on compute intensive 

“push” despite its data locality challenges (2.29x Kepler 

vs Intel Xeon E5-2670), moderate speed up on “charge” 

due to synchronization (1.6x), and no speed up on “shift” 

(0.78x) due to PCIe challenges; Cache misses issue on 

large size plasma simulations is no longer significant on 

GPU as it relies on massive number of threads to hide 

latency 



References 
B. Wang, S. Ethier, W. Tang, K. Madduri, S. Williams, L. Oliker, “Modern Gyrokinetic Particle-In-Cell 
Simulation for Fusion Plasmas on Top Supercomputers”, submitted to SIAM Journal in Scientific 
Computing, 2015  

 

B. Wang, S. Ethier, W. Tang, T. Williams, K. Madduri, S. Williams, L. Oliker, “Kinetic Turbulence 
Simulations at Extreme Scale on Leadership-Class Systems”, Supercomputing (SC), 2013. 

 

K. Ibrahim, K. Madduri, S. Williams, B. Wang, S. Ethier, L. Oliker “Analysis and optimzation of 
gyrokinetic toroidal simulations on homogenous and hetergoenous platforms”, International 
Journal of High Performance Computing Applications, 2013. 

 

K. Madduri, K. Ibrahim, S. Williams, E.J. Im, S. Ethier, J. Shalf, L. Oliker, "Gyrokinetic Toroidal 
Simulations on Leading Mult- and Manycore HPC Systems", Supercomputing (SC), 2011. 

 

K. Madduri, E.J. Im, K. Ibrahim, S. Williams, S. Ethier, L. Oliker, "Gyrokinetic Particle-in-Cell 
Optimization on Emerging Multi- and Manycore Platforms", Parallel Computing, 2011. 

 

S. Ethier, M. Adams, J. Carter, L. Oliker, “Petascale Parallelization of the Gyrokinetic Toroidal 
Code”, In Proc. High Performance Computing for Computational Science, 2010. 

 

K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier, K. Yelick, "Memory-Efficient 
Optimization of Gyrokinetic Particle-to-Grid Interpolation for Multicore Processors", 
Supercomputing (SC), 2009.  

 

M. Adams, S. Ethier and N. Wichmann, “Performance of Particle-in-Cell methods on highly 
concurrent computational architectures”, Journal of Physics: Conference Series, 2007. 

 



Thank you 

 

 

Questions? 


