
Porting and Optimizing GTC-P Code to NVIDIA GPU

March 19, 2015

GTC Technology Conference, San Jose

Bei Wang

Princeton University

Collaborators

• Computer Science Department of Computational Research Division at LBL: Khaled

Ibrahim, Sam Williams, Lenny Oliker

• Penn State University: Kemash Madduri

• NVIDIA: Peng Wang etc.

What we simulate?

• Extremely hot plasma (several hundred million degree) confined by very
strong magnetic field

• Turbulence: What cause the leakage of energy in the system?

magnets

plasma

magnetic field

TOKAMAK

source: cpepweb.org

• Mathematics: 5D gyrokinetic Vlasov Poisson equation

• Numerical method: Gyrokinetic Particle-in-cell (PIC) method

131 million grid points, 30 billion particles, 10 thousand time steps

• Objective: Develop an efficient numerical tool to reproduce
and predict turbulence and transport in tokamak using high
end supercomputers

3D Torus

zeta

theta psi
theta

PIC method

• The system is represented by a set of particles
• Each particle carries several components: position, velocity and weight (x, v, w)
• Particles interact with each other through long range electromagnetic forces
• Naively, forces are calculated pairwise ~ O(N2) computational complexity

– Intractable with million or billion number of particles
– Fast Multiple Method (FMM) ~ O(NlogN)

• Alternatively, forces are evaluated on a grid and then interpolated to the particle ~ O(N+MlogM)
(N/M=100-10,000)

• PIC approach involves two different data structures and two types of operations
– Charge: Particle to grid interpolation (SCATTER)
– Poisson/Field: Poisson solve and field calculation
– Push: Grid to particle interpolation (GATHER)

Particle-grid interpolation

Gyrokinetic PIC method

• Each particle is a charge ring that varies in size

• Particle-grid interpolation is through 4 points on the ring

• Each particle accesses up to 16 unique grid memory locations in 2D plane (increase
cache working set)

Classic PIC Gyrokinetic PIC

The history of GTC-P code

GTC-P C (Wang etc, SC1)

2D domain decomposition Particle decomposition

GTC C (Madduri etc., SC09,SC11)

1D domain decomposition Particle decomposition

GTC-P Fortran (Ethier and Adams, 2007)

2D domain decomposition

GTC Fortran (Lin etc. Science, 1998)

1D domain decomposition Particle decomposition

All codes share the exact same physics model, e.g.,
electrostatic, circular cross-section

GTC-P: six major subroutines

Charge

Smooth

Poisson

Field

Push

Shift

• Charge: particle to grid
interpolation (SCATTER)

• Smooth/Poisson/Field:
grid work (local stencil)

• Push:
• grid to particle

interpolation (GATHER)
• update position and

velocity
• Shift: in distributed

memory environment,
exchange particles among
processors

GPU Implementations - Charge

• Challenges
– High memory bandwidth to stream data requires changing the data layout
– Small memory to core ratio restricts the use of memory replication to avoid data hazards
– Random memory access -- small cache capacity makes it difficulty to exploit locality to avoid expensive memory access

• First Attempt

– Use SoA data structure – stream data access
– Use global atomics – non coalesced

• Second Attempt

– Use cooperative computation to capture locality for co-scheduled threads – use global atomics, but in a coalesced way (by
transposing in shared memory)

– Leads to relatively poor performance on Fermi, but great performance on Kepler

• Third Attempt
– Explored different techniques for explicit management of the GPU shared memory – shared memory atomics
– Leads to good performance on Fermi (where DP atomics operation is expensive), but relative poor performance on Kepler (because

it enabled fast DP atomic increment while preserves the same amount of shared memory as Fermi) – extensive shared memory
usage

GPU Implementations - Push

• Challenge
– Random memory access

• Optimizations Attempts
– Redundantly re-compute values rather than load from memory
– Use loop/computation fusion to further reduce memory usage for

auxiliary arrays
– Use GPU texture memory for storing electric field data

GPU Implementations - Shift

• First Attempt
– Maintain small shared buffer that are filled as it traversed its subset of the particle array – extensive

shared memory usage
– Particle are sorted into three buffers for left, right shift and keep buffer
– Whenever the local buffer is exhausted, the thread automatically reserve a space in a pre-allocated

global buffer
– Transpose data while flush to global memory – normal shift algorithm on CPU use AoS data

structure - data transpose

• Second Attempt
– Shift and sort are simultaneously executed
– Particles are sorted into three buffers, left, right shift and keep buffer, relying on fast Thrust lib – no

shared memory usage
– Modify the normal iterative shift algorithm to pass message with SoA data structure – no data

transpose

Single Node Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CPU GPU

new shift

cooperative

sorting

original

Sp
e

ed
 u

p
 r

el
at

iv
e

to
 b

as
e

lin
e

 C
P

U
 v

er
si

o
n

• Double Precision
• ECC enables
• Intel Xeon E5-2670 vs. NVIDIA

Tesla K20x (Piz Daint)
• Speed up ~1.7x

Experimental Platforms

Performance Evaluation (Weak Scaling) –

One Process Per NUMA Node

Performance Evaluation –

One Process Per NUMA Node

0	

10	

20	

30	

40	

50	

60	

70	

A	 B	 C	 D	 A	 B	 C	 D	 A	 B	 C	 D	

Mira	 Piz	Daint	(CPU)	 Piz	Daint	(GPU)	

Se
co
n
d
s	

Smooth Field Poisson Sort Shift Push Charge

Conclusion

• Performance of the CPU-based architectures is generally

correlated with the DRAM STREAM bandwidth per NUMA

node; Large size plasma simulations on CPU suffer from

cache misses issue.

• On GPU, substantial speed up on compute intensive

“push” despite its data locality challenges (2.29x Kepler

vs Intel Xeon E5-2670), moderate speed up on “charge”

due to synchronization (1.6x), and no speed up on “shift”

(0.78x) due to PCIe challenges; Cache misses issue on

large size plasma simulations is no longer significant on

GPU as it relies on massive number of threads to hide

latency

References
B. Wang, S. Ethier, W. Tang, K. Madduri, S. Williams, L. Oliker, “Modern Gyrokinetic Particle-In-Cell
Simulation for Fusion Plasmas on Top Supercomputers”, submitted to SIAM Journal in Scientific
Computing, 2015

B. Wang, S. Ethier, W. Tang, T. Williams, K. Madduri, S. Williams, L. Oliker, “Kinetic Turbulence
Simulations at Extreme Scale on Leadership-Class Systems”, Supercomputing (SC), 2013.

K. Ibrahim, K. Madduri, S. Williams, B. Wang, S. Ethier, L. Oliker “Analysis and optimzation of
gyrokinetic toroidal simulations on homogenous and hetergoenous platforms”, International
Journal of High Performance Computing Applications, 2013.

K. Madduri, K. Ibrahim, S. Williams, E.J. Im, S. Ethier, J. Shalf, L. Oliker, "Gyrokinetic Toroidal
Simulations on Leading Mult- and Manycore HPC Systems", Supercomputing (SC), 2011.

K. Madduri, E.J. Im, K. Ibrahim, S. Williams, S. Ethier, L. Oliker, "Gyrokinetic Particle-in-Cell
Optimization on Emerging Multi- and Manycore Platforms", Parallel Computing, 2011.

S. Ethier, M. Adams, J. Carter, L. Oliker, “Petascale Parallelization of the Gyrokinetic Toroidal
Code”, In Proc. High Performance Computing for Computational Science, 2010.

K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier, K. Yelick, "Memory-Efficient
Optimization of Gyrokinetic Particle-to-Grid Interpolation for Multicore Processors",
Supercomputing (SC), 2009.

M. Adams, S. Ethier and N. Wichmann, “Performance of Particle-in-Cell methods on highly
concurrent computational architectures”, Journal of Physics: Conference Series, 2007.

Thank you

Questions?

