
PETER MESSMER, NVIDIA

SCIENTIFIC VISUALIZATION
ON GPU CLUSTERS

Visualization ≠ Rendering

Visualization

Coordinate

transformations

Feature

extraction

Thresholding

Isosurfaces,

Isovolumes

Streamlines

Rendering
Surface

Rendering

Volume

Rendering

Field Operators

(Gradient, Curl,..)

Clip, Slice

Binning,

Resample
Line

Rendering

Compositing

Visualization

Feature

extraction

Isosurfaces,

Isovolumes

Streamlines

Field Operators

(Gradient, Curl,..)

Filtering

Line

Rendering

Coordinate

transformations

Feature

extraction

Thresholding Isosurfaces,

Isovolumes

Streamlines

Field Operators

(Gradient, Curl,..)

Clip, Slice

Binning,

Resample
Rendering

Surface

Rendering

Volume

Rendering

Line

Rendering

Compositing

Simulation: Data as needed in numerical algorithm

Filtering: Conversion of simulation data into data ready for rendering

Typical operations: binning, down/up-sampling, iso-surface extraction, interpolation, coordinate transformation, sub-selection, ..

Sometimes embedded in simulation

Rendering: Conversion of shapes to pixels (Fragment processing)

Compositing: Combination of independently generated pixels into final frame

Visualization

Filtering Rendering Compositing Simulation

THE VISUALIZATION PIPELINE

PARTICULARITIES IN HPC VIZ

Images may be subject to copyright

Parallelism Remoteness Heterogeneity

OUTLINE

Tools

Paraview, Visit, others

Rendering

Enable HW rendering on Tesla

Remote rendering

Compositing

Delivery

In-situ visualization

High-level overview. Some parts platform dependent. Check with your sysadmin.

VISUALIZATION APPLICATIONS

PARAVIEW
Scalar, vector and tensor field data features

Plots: contour, curve, mesh, pseudocolor, volume,..

Operators: slice, iso-surface, threshold, binning,..

Quantitative and qualitative analysis/vis

Derived fields, dimension reduction, line-outs

Pick & query

Scalable architecture

Developed by Kitware, open source

http://www.paraview.org

https://wci.llnl.gov/codes/visit/

PARAVIEW’S SCALABLE ARCHITECTURE
Client-server-server architecture

Server MPI parallel

Distributed filtering

GPU accelerated, parallel

 rendering*

* requires X server on each node

VISIT
Scalar, vector and tensor field data features

Plots: contour, curve, mesh, pseudo-color, volume,..

Operators: slice, iso-surface, threshold, binning,..

Quantitative and qualitative analysis/vis

Derived fields, dimension reduction, line-outs

Pick & query

Scalable architecture

Open source

http://wci.llnl.gov/codes/visit/

https://wci.llnl.gov/codes/visit/

VISIT’S SCALABLE ARCHITECTURE

Client-server architecture

Server MPI parallel

Distributed filtering

(multi-)GPU accelerated,

 parallel rendering*

* requires X server on each node

SOME OTHER TOOLS

Wide range of visualization tools

Often emerged from specialized application domain

Tecplot, EnSight: structural analysis, CFD

IndeX: seismic data processing & visualization

IDL: image processing

Early adopters of visual programming

AVS/Express, OpenDX

FURTHER READING

Paraview Tutorial:

http://www.paraview.org/Wiki/The_ParaView_Tutorial

VisIt Manuals/Tutorials:

http://wci.llnl.gov/codes/visit/manuals.html

RENDERING

OPENGL: API FOR GPU ACCELERATED
RENDERING

• Primitives: points, lines, polygons

• Properties: colors, lighting, textures, ..

• View: camera position and perspective

• Shaders: Rendering to screen/framebuffer

• C-style functions, enums

See e.g. “What Every CUDA Programmer Should Know About OpenGL”

(http://www.nvidia.com/content/GTC/documents/1055_GTC09.pdf)

A SIMPLE OPENGL EXAMPLE

glColor3f(1.0f,0,0);

glBegin(GL_QUADS);

 glVertex3f(-1.0f, -1.0f, 0.0f); // The bottom left corner

 glVertex3f(-1.0f, 1.0f, 0.0f); // The top left corner

 glVertex3f(1.0f, 1.0f, 0.0f); // The top right corner

 glVertex3f(1.0f, -1.0f, 0.0f); // The bottom right corner

glEnd();

glFlush();

State-based API

(sticky attributes)

Drawing

Render to screen

glColor3f(1.0f,0,0);

glBegin(GL_QUADS);

 glVertex3f(-1.0f, -1.0f, 0.0f);

 glVertex3f(-1.0f, 1.0f, 0.0f);

 glVertex3f(1.0f, 1.0f, 0.0f);

 glVertex3f(1.0f, -1.0f, 0.0f);

glEnd();

glFlush();

float* vert={-1.0f, -1.0f, ..};

float* d_vert;

cudaMalloc(&d_vert, n);

cudaMemcpy(d_vert, vert, n,

 cudaMemcpyHostToDevice);

renderQuad<<<N/128, N>>>(d_vert);

flushToScreen<<<..>>>();

?

CUDA-OPENGL INTEROP: MAPPING
MEMORY

• OpenGL: Opaque data buffer object (Mention here that this is mainly in
“legacy” OpenGL and more control available in modern OpenGL)

• Vertex Buffer Object (VBO)

• User has very limited control

• CUDA: C-style memory management

• User has full control

• CUDA-OpenGL Interop:

 Map/Unmap OpenGL buffers into CUDA memory space

 cudaGraphicsGLRegisterBuffer(cuda_vbo, *vbo, flags);

 cudaGraphicsMapResources(1, cuda_vbo, 0);

CAN ALL GPUS SUPPORT OPENGL?

GeForce : standard feature set including OpenGL 4.5

Quadro : + certain highly accelerated features (e.g. CAD)

Tesla, K20X,m : Requires setting GPU Operation Mode (GOM) to “All on”

Tesla K40, K80: GOM “All on” by default

 nvidia-smi –-query-gpu=gom.current

 nvidia-smi –q

OPENGL CONTEXT

State of an OpenGL instance

Incl. viewable surface

Interface to windowing system

Context creation: platform specific

Not part of OpenGL

Handled by Xserver in Linux/Unix-like systems

New alternative: EGL (currently: OpenGL ES only)

GLX: Interaction X<-> OpenGL

Driver

GPU

3D X Server

Application

libGL

GLX OpenGL

libGLX Xlib

OPENGL ON HEADLESS SERVERS

libGLES

OpenGLES

Driver

GPU

3D X Server

Application

libGL

OpenGL

libEGL Xlib libGLES

OpenGL ES EGL

Current State Current State for OpenGL ES applications

REMOTE RENDERING

LOCAL RENDERING

Application

libGL Xlib

GLX

X
1
1

E
v
e
n
ts

C
o
m

m
a
n
d
s

Driver

GPU, monitor attached

2D/3D X Server

OpenGL

X-FORWARDING: THE SIMPLEST FORM OF
“REMOTE” RENDERING

Application

libGL Xlib

OpenGL/GLX

X11 Events

X11 Commands

Driver

GPU, monitor attached

2D/3D X Server On remote system:
export DISPLAY=59.151.136.110:0.0

Network

SERVER-SIDE RENDERING + REMOTE VIZ
APPLICATION

Driver

GPU

2D/3D X Server

Application

libGL Xlib

GLX

OpenGL

X11

Events
X11

Cmds

Driver

GPU, monitor attached

Network

Client

SERVER-SIDE RENDERING + SCRAPING

Driver

GPU

2D/3D X Server

Application

libGL Xlib

GLX

OpenGL

X11

Events
X11

Cmds

Driver

GPU, monitor attached

Network

S
c
ra

p
e
r

Images

Client

CAPTURE/ENCODING WITH NVFBC/NVIFR

Driver

GPU

2D/3D X Server

Application

libGL Xlib

GLX

OpenGL

X11

Events
X11

Cmds

Driver

GPU, monitor attached

Network

N
V

F
B
C

/N
V

IF
R

Images

Client

H.264

https://developer.nvidia.com/grid-app-game-streaming

https://developer.nvidia.com/nvidia-video-codec-sdk

GLX FORKING WITH INTERPOSER LIBRARY

Driver

GPU

3D X Server

Application

libGL VirtualGL Xlib

GLX

OpenGL Images

Driver

GPU, monitor attached

Network

X11

Events

X11

Cmds

Proxy X

Server Images

Client App

EXAMPLE OF REMOTING SOLUTIONS

TurboVNC + VirtualGL

+ Open source solution

+ Compressed image transport

+ Remote GPU accelerates OpenGL

http://www.virtualgl.org

NICE DCV

+ Commercial grade product

+ H264 encoded video stream

http://www.nice-software.com/products/dcv

PARALLEL VISUALIZATION

PARALLEL VISUALIZATION
Domain decomposition

Parallelism at multiple levels

Filtering

Rendering

- Both supported by VisIt & Paraview

- Heavy lifting already done!

- Typically biggest challenge: Setup in parallel environment

- Both tools provide support for most common cases

- Both VisIt & Paraview MPI parallel -> need custom build

PARALLEL COMPOSITING WITH ICET

• Each node renders fraction of image

• Sort last compositing

• Highly scalable

• Widely used (Paraview, VisIt ..)

http://icet.sandia.gov

IN-SITU VISUALIZATION

LEGACY WORKFLOW

Sim Sim Sim

Viz Viz Viz

Time

File system pressure

Long time-to-science

PIPELINED IN-SITU ANALYSIS

Sim Sim Sim

Viz Viz Viz

Time

Reduced file system consumption

Early detection of faulty runs

Reduced

DIFFERENT VISUALIZATION SCENARIOS

1) Legacy workflow

Separate compute & viz system

Communication via filesystem

2) Partitioned HPC system

Different nodes for viz & compute

Communication via High Perf Network

3) Co-Processing

Compute on GPU, viz on CPU

Compute and visualization on same GPU

HPC System

Compute
GPU

Viz System

Viz
GPU Filesystem

HPC System

Compute
GPU

Viz
GPU

Network

HPC System

Compute
+Viz

nodes

SUPPORT FOR IN-SITU VISUALIZATION
Paraview: Catalyst

VisIt: LibSim

Instrument application to expose data

Paraview: Adaptor

LibSim: Data access callbacks

Potential for interactive steering

S5815, today, 3:30: Programming Pointers to Optimize your In-Situ Visualization Pipeline

S5710, Fri 9:30: In-Situ Data Analysis and Visualization: ParaView, Calalyst and VTK-m

SUMMARY
Visualization is more than rendering

Filtering often expensive component

Fast rendering can enable new applications (interactive supercomputing)

Tesla systems can be used for rendering
On some systems requires GOM=All ON

Xserver or EGL

Remote visualization
Supported by common tools

Take advantage of available hardware (H264 encoder)

Parallel Rendering
Use IceT for compositing

In-Situ Visualization
Supported by common tools

THANK YOU

