
GLOBAL BANKING & INVESTOR SOLUTIONS DIVISION

CORPORATE & INVESTMENT BANKING, PRIVATE BANKING,

ASSET MANAGEMENT, SECURITIES SERVICES

3/17/2015

A TRUE STORY: GPU IN PRODUCTION
FOR INTRADAY RISK CALCULATIONS

Régis FRICKER

Regis.fricker@sgcib.com

GTC2015

17/03/2015 2

GLOBAL BANKING & INVESTOR SOLUTIONS DIVISION

CORPORATE & INVESTMENT BANKING, PRIVATE BANKING,

ASSET MANAGEMENT, SECURITIES SERVICES

CONTENTS

PROBLEMATIC

A. OUR PROBLEM

B. PARALLELIZATION OF A MONTE CARLO SCHEME

SOLUTION

A. SOLUTION CHALLENGES

B. HOW TO USE GPU IN C# ?

C. HOW TO USE GPU IN A FINANCE COMPUTE FARM ?

IN PRACTICE

A. PROJECT MANAGEMENT

B. RAW PERFORMANCES

C. RISK ENGINE PERFORMANCES

D. BREAKING CHANGE THINKING

PROBLEMATIC

417/03/2015

OUR PROBLEM

 What do traders need?

What do managers need?

Most importantly, what do clients need ?

Fast prices:
To answer client request

rapidly.

Accurate prices:
Require a lot of computation

time.

Reduce costs:
Reduce computation

ressources.

Control risks:
Even more computation time

(more and more).

Efficient service:
Fast answer to requests

Competitive prices:
Complex model. High

computation time.

517/03/2015

PARALLELIZATION OF A MONTE-CARLO SCHEME

Definition

Simulation

● Transition function doesn’t depend on path.

● Two nested loops: one with respect to time and one to path.

● Parallelism on path loop because Path >> N

PayOff function doesn’t depend on path

● Parallelism on path loop

SOLUTION

717/03/2015

SOLUTION CHALLENGES

Current pricing ecosystem

● Risk engine is fully written in C#

● CPU Compute Farm.

Objective

● Use GPU and SIMD instruction in C#.

● Introduce GPU servers in Compute Farm.

● Reduce latency by a factor 30.

● Reduce compute costs of the Farm.

● Ensure overall profitability (hardware and maintainability over time).

817/03/2015

ALTIMESH HYBRIDIZER (1/2)

External tool provided by Altimesh

Writing and maintaining one single code in C#.

 Generating readeable source code for:

● CUDA

● C++/OMP

● C++/AVX

C# inheritance are handled by Hybridizer.

Hybridizer offers extensibility framework to allow usage of platform-specific

features (shared memory, fast math, libraries, etc).

Easy to call behind C#:

● DllImport to call native dll.

● Data marshalling are handled by Hybridizer.

One code, 3 runners (C#, AVX, CUDA), same numerical results

917/03/2015

ALTIMESH HYBRIDIZER (2/2)

Hybridizer is not a magic wand.

Some C# features are not handled:

● No allocation inside a kernel.

● very limited runtime support (no collection)

Loop parallelization is not automatic.

Sequential pattern is not automatically changed to parallel pattern.

MC framework must be adapted to satisfy these constraints and

map on work distribution concepts.

1017/03/2015

NEW MONTE-CARLO FRAMEWORK

Thinking parallel not sequential.

Back to basics:

● Memory accesses (coalescence, memory type).

● Memory allocation.

Pricing memory footprint is adjustable.

Model and Payoff implementation are hardware independent.

Everyone can add a model or a payoff without Cuda knowledge.

1117/03/2015

FINANCE DISTRIBUTED CALCULATION SCHEME

Database for market data, deals information and pricing results.

CPU compute farm:

● Each server has 2 bi-CPU (8 cores by CPU).

Each core of CPU compute farm:

● Load one deal.

● Load market data.

● Price this deal.

● Upload result.

IBM Platform Symphony solution is used as grid middleware.

1217/03/2015

GPU SERVERS

GPU server contains:

● 1 bi-CPU (8 cores by CPU).

● 2 K40.

GPU server price = 1.5 x CPU server price.

Pricing on GPU must be accelerated by 3 to be profitable.

GPU are not handled properly by Symphony

NVidia limitation in multi process context:

● Each process have its own Context. Around 80Mo by process and card.

● Each process are independent. How to manage GPU memory footprint ?

1317/03/2015

GPU SCHEDULER

One GPU scheduler by server.

● One context by card.

● Easy to manage GPU memoryfootprint

Multithreading and Stream.

Symphony

Pricing Service

Deal and MarketData

Symphony

Pricing Service

Queue

Runner Runner

Enqueue

Pricing request

Dequeue

Pricing request

GPU Scheduler

……

……

K40 K40

Result Result

Result Database Deal and MarketDataResult Database

IN PRACTICE

1517/03/2015

PROJECT MANAGEMENT

4 people:

●2 on Monte-Carlo framework.

●1 on GPU scheduler.

●1 on risk engine integration.

March
2013

• Project starting

July 2013
• First prototype.

Nov 2013
• Available in pre-trade.

Feb 2014
• Available in risk engine.

March
2014

• Presentation to Société
Générale ExCo.

March
2015

• All Rates/FX models and
payoffs are available in GPU.

1617/03/2015

RAW PERFORMANCES (1/2)

Rewritten C# version is twice faster than legacy code.

Configuration :

● Intel Xeon E5-1620 @ 3.60Hz (8 cores with hyperthreading)

● One K40.

Product:

● Call on mean price with a 2 factor model.

● Nb time step: 250.

● Nb paths: 300 000.

Single price:

Single Thread C# 8 threads C# Single thread AVX 8 thread AVX GPU

Time 19.908 5.218 8.931 3.65 0.239

Gain 1.0 3.8 2.2 5.5 83.3

1717/03/2015

RAW PERFORMANCES (2/2)

Workload test:

● Launch 8 processes (1 by core).

● Each process price 10 times the same product.

 80 prices are done.

Hardware ressources are saturated during this test.

GPU usage indicators:

● GPU utilisation: 99%

● Power: 150W / 235W.

● Memory usage peak: 11Go/12Go

C# AVX GPU

Time 256 176 15

Gain 1.0 1.5 17.1

1817/03/2015

RISK ENGINE PERFORMANCES

Cores to manage a specific Book are divided by 10.

Pricing time behind the Risk Engine is not only MC time:

1. Time to load Deal info and Market Data.

2. Model calibration time.

3. Monte-Carlo time.

4. Time to upload result.

On GPU, Monte-Carlo is not a problem anymore.

Other tasks becomes significant and must be optimized.

In the current setup, GPU are not financially interesting when Monte-

Carlo time is less then one third of total time.

1917/03/2015

BREAKING CHANGE THINKING

At Société Générale, GPU is now synonymous with performance and

efficiency:

● 2013 : a client request for a very sophisticated product 5 min

● 2014 : same request 8s

GPU is not scary anymore

● no longer reserved to a small expert community

Think parallel, not sequential.

● Every new algorithm should be thought in terms of parallel execution

2017/03/2015

CONCLUSION

Thank you.

Questions.

