
Jeff Clifford (Double Negative VFX)

Lukáš Polok (Brno University of Technology)

Simon Pabst (Double Negative VFX)

Talk Overview

1. The need in production (Jeff)

2. The algorithm on the GPU (Lukáš)

3. Integration into DNeg’s pipeline (Simon)

About DNeg

• Started in 1998 with a team of 30 people. Now 1250 people approx.

• Latest film work was Interstellar

 Offices in London, Singapore & Vancouver

 R&D challenges have changed

 Unique challenges for handling of on-set data appropriate for GPU

IMPART

• Intelligent Management Platform for Advanced Real-time Media Processes

• EU Research Project

• Two Industrial Partners

• Four Universities

On-set Data Capture
• Data captured on-set vital for digital feature film post production

• Reference Photos, HDRIs, Panoramas, LIDAR, GPS, witness cameras, …

• One use-case: Photogrammetry

• FF6 required 8 hours to process on CPU

• IMPART provided opportunity to accelerate that as a POC initially in OpenCL

• Latest CUDA prototype means we can process same data in 1h on a laptop

• Allows for processing of material on-set!

Bundle Adjustment (BA)

• 3D reconstruction from stills (N cameras)

• Optimization problem, solvable using MLE

• Strives to reduce reprojection errors (in 2D)

• Related problems in computer vision

• Subtly different from SfM (one camera)

• Different from SLAM (reduces errors in 3D)

Bundle Adjustment as a Graph

• Vertices:

• 3D point positions

• Camera poses

• Camera parameters

• Edges:

• 3D point observations

• Any other constraints

Graph Representation

• Represented by a sparse matrix

• Incidence (Jacobian) matrix A

• Adjacency (Hessian) matrix Λ

• Has a block structure

vertices

v
e

rt
ic

e
s

e
d
g
e
s

c0 c1 c2 c3 p1 p2 p3 p4 p5 p6 p7

p1 p2 p3 p4 p5 p6 p7

c0 c1 c2 c3

Variable Block Structure

• Size of blocks in a single matrix

• Decompose camera blocks [Jeong12]

• Solved on a GPU [Rennich12, Tawara12]

• Variable block size schemes

• Known at compile-time [Polok13]

• Applies to GPUs as well

Yekeun Jeong et. al., „Pushing the Envelope of Modern Methods for Bundle Adjustment,“ PAMI, 2012

Steve Rennich, „Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication,“ talk on GTC 2012

Tetsuo Tawara, „Levenberg-Marquardt Using Block Sparse Matrices on CUDA,“ talk on GTC 2012

Lukas Polok et. al., "Cache efficient implementation for block matrix operations," HPC, 2013

Solving Bundle Adjustment

• (Damped) Gauss-Newton methods

• Repeatedly solve for

• Serial direct methods [Kummerle11, Kaess11]

• Serial sparse factorization, backsubstitution

• Or parallel gradient descent [Wu2013]

• Easy to implement, less numerically robust

• Implemented a parallel direct solver

Kummerle, Rainer, et al., „g2o: A general framework for graph optimization," ICRA, 2011

Kaess, Michael, et al. „iSAM2: Incremental smoothing and mapping using the Bayes tree,“ IJRR, 2011

Wu, Changchang. „Towards linear-time incremental structure from motion," 3DV, 2013

while 1

 build linearized system (Λ, r)

 solve u = Λ / r

 if norm(u) < thresh

 done

 update x = x Θ u +

Solving Bundle Adjustment Quickly

• A bipartite graph: 3D points not interrelated

• Can use Schur complement

• Maps well to GPU

• Parallel matrix multiplication [Polok15]

• Parallel factorization of reduced camera system

• Can be nested

• Can use maximum independent set for explicit ordering

Lukas Polok et. al., „Fast Sparse Matrix Multiplication on GPU," to appear at HPC, 2015

Solving Time Breakdown

all in double

precision

Matrix Factorization Time

Comparison

5226 x 5226,

40.06% dense

Matrix Multiplication Time

Comparison

Fast Matrix Multiplication in SW

BlockMatrix A, B, C, D;

// lambda sections

typedef TypeList(Size<6, 3>, Size<5, 3>) BS;

typedef TransposeSizes<BS>::Result BS_T;

typedef TypeList(Size<3, 3>) D_invS;

// block sizes specifications

BlockMatrix BD_inv, SC; // the results

BD_inv = SpDGEMM<BS, D_invS>(B, D_invS); // calculate BD-1

SC = SpDGEMM<BS, BS_T>(BD_inv, C); // calculate BD-1C

Lukas Polok et. al., "Cache efficient implementation for block matrix operations," HPC, 2013

Fast Matrix Multiplication in HW

• ESC algorithm [Dalton13, Polok15]

• Expansion

• Sorting

• Compression

Steven Dalton et. al., "Optimizing sparse matrix-matrix multiplication for the GPU," 2013

Lukas Polok et. al., „Fast Sparse Matrix Multiplication on GPU," to appear at HPC, 2015

Fast Matrix Multiplication in HW

• ESC algorithm [Dalton13, Polok15]

• Expansion

• Sorting

• Compression

• 480 MFLOP/s (0.0336%)

• Blocks to the rescue!

Steven Dalton et. al., "Optimizing sparse matrix-matrix multiplication for the GPU," 2013

Lukas Polok et. al., „Fast Sparse Matrix Multiplication on GPU," to appear at HPC, 2015

Block Matrix Multiplication Time

Estimating 3D reconstruction errors

• Important for practical use on-set

• Involves system matrix inverse (fully dense!)

Estimating 3D reconstruction errors

Can calculate parts of the inverse [Björck96]

Difficult to parallelize

A. Björck, „Numerical methods for least squares problems,“ SIAM, 1996

Estimating 3D reconstruction errors

Can update it incrementally very fast! [Ila15]

Viorela Ila et. al, „Fast Covariance Recovery in Incremental Nonlinear Least Square Solvers“, to appear at ICRA, 2015

Jigsaw

• DNeg’s in-house tool to ingest and process data captured on-set

• Handles photos, LIDAR, witness cameras, HDRIs, …

• Can dispatch processing jobs to the farm or locally (on-set)

• Easy to extend

Questions ?

DNeg is hiring!!! Join our teams in London,

Singapore and Vancouver (event next week!)

