

Data Center and Cloud Computing Market Landscape and Challenges

Manoj Roge, Director – Wired & Data Center Solutions Xilinx Inc.

Outline

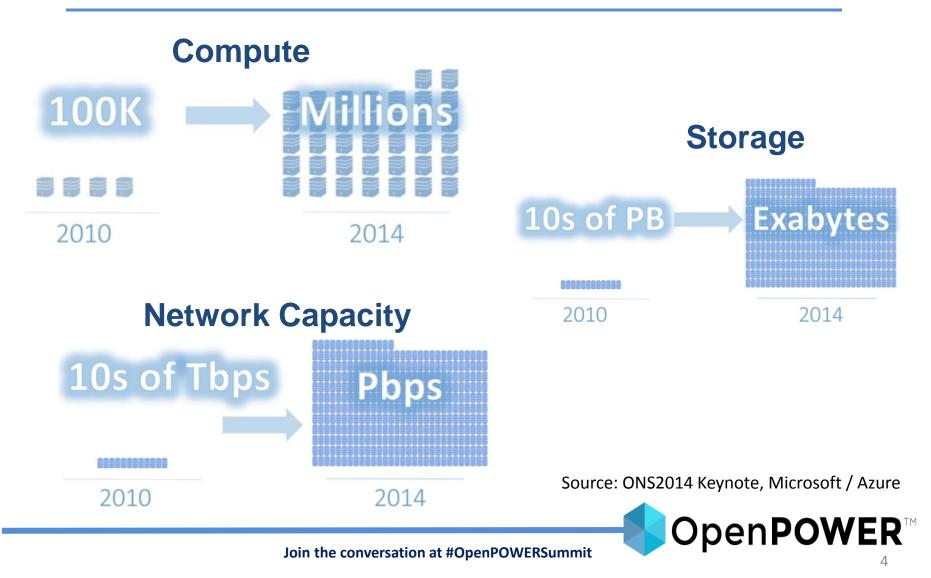
- Data Center Trends
- Technology Challenges
- Solution Options
- Xilinx Focus
- OpenPOWER Developments

Data Center Trends

Software Defined Data Center

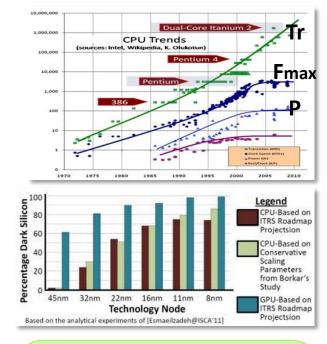
Evolving Architectures & Standards

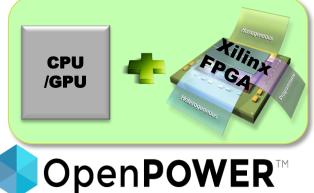
Need for Workload Acceleration



Join the conversation at #OpenPOWERSummit

Exponential Growth




Technology Challenges

- Power/thermal density is limiting Fmax scaling
 - End of Dennard scaling ⇒ End of Moore's law

- CPU performance scaling problematic
 - Difficulties in exploiting task-level parallelism with multi-core ⇒ Dark silicon

- Heterogeneous computing ⇒ Best of both worlds
 - Higher performance and lower power
 - Increased compute density

Need for New Data Center Architecture

- Think beyond traditional architecture
 - Need scalable architecture to boost system performance & reduce latency
- Design for application acceleration & processor offload
 - Heterogeneous processing for specialized workloads
- Need to improve customer CAPEX and OPEX
 - Performance/Watt must be key consideration

How can FPGAs help Acceleration?

COMPUTE

Image Search 8x throughput Video Transcode 20x throughput Image Processing 50x throughput

STORAGE

Hybrid memory Latency hiding 10x power saving Key-Value Stores 36x RPS/Watt 10x-100x latency reduction

Compression/Encryption Customize algorithms Latency sub 5us Encryption rate 10x

NETWORKING

Secure socket Latency sub 5us Encryption rate 10x

TCP endpoint Latency sub 2us 10x virtual circuits

Packet switch Latency sub 100ns Protocol choices IO/SerDes Logic FPGA Architecture

(Conceptual)

Join the conversation at #OpenPOWERSummit

DNN

Barriers to Adoption: Ease of Programming

Need

High Performance / Watt

Solution Attributes

Architecturally Optimizing Compilation

Compiler needs to be fast and efficiently utilize resources

Can develop accelerators with high performance/watt

Complete SW Development Environment

Software Development Flow for FPGA Hardware

- Single Environment for software workflows
- CPU/GPU like development environment

Easily Upgradeable

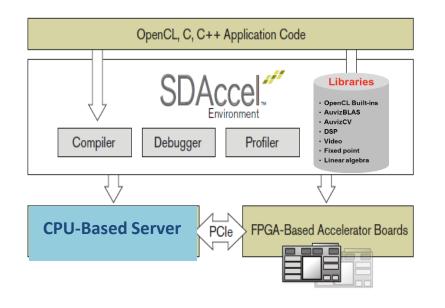
Reconfigurable Optimized Accelerators

- Need accelerator flexibility for different applications
- Require always on IO and networking interfaces

Xilinx Has Complete Hardware and Software Solutions

C, C++, OpenCL, Domain-specific

- ✓ SDAccel for OpenCL, C, C++ enables up to 25x better performance per watt
- ✓ SDSoC provides greatly simplified ASSPlike C, C++ programming experience
- ✓ SDNet allows creation of 'Softly' Defined Networks


Expand Users to Broad Community of Software and Systems Engineers

S XILINX

First Complete CPU/GPU Development **Experience on FPGAs**

Only FPGA Vendor with C, C++, OpenCL

Leverage Existing C & C++ Code Base

CPU/GPU-Like Development Experience

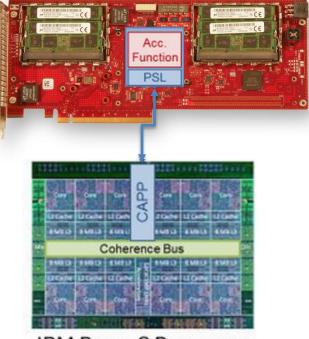
- ✓ Complete software workflow for developers with little to no prior FPGA experience
- ✓ CPU emulation, co-simulation and native hardware
- Automatic instrumentation of compiled accelerators with profiling visibility across host and kernels

Join the conversation at #OpenPOWERSummit

LL PROGRAMMABLE

OpenPOWER and Xilinx Driving Heterogeneous Computing

- Open Innovation required to innovate across full HW & SW stack
 - OpenPOWER has setup impressive ecosystem for collaboration
- FPGAs are a natural fit in rapidly evolving markets
 - Parallel architecture, flexibility and configurability are its strengths
- Power8 + FPGA with CAPI (Coherent Accelerator Processor Interface)
 - Custom acceleration engine on coherent fabric of the POWER8
- CAPI removes overhead & complexity of IO subsystem
 - Allows FPGA accelerator to operate as part of an application



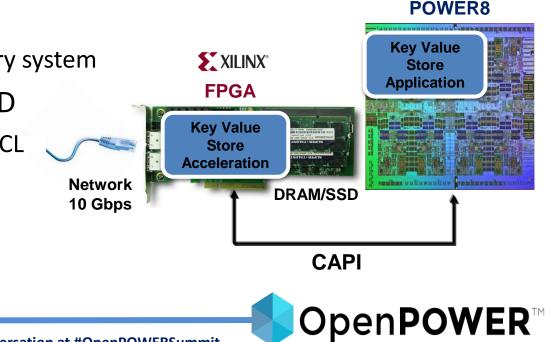
Convey CAPI Developer Kit for Xilinx FPGAs

- CAPI Developer Kit enables application specific acceleration on IBM Power 8 systems
- Convey's Eagle coprocessor delivers high density FPGA acceleration and large, high bandwidth onboard memory in a PCIe form factor
- Xilinx XC7VX980T FPGA provides capacity and bandwidth for complex, highly parallel designs

Convey-Xilinx Accelerator

XILINX

IBM Power8 Processor



IEM

Xilinx Key-Value-Store with CAPI

- Power8 + FPGA connectivity with CAPI
 - Enables seamless application acceleration
- Acceleration
 - 35x performance per watt improvement
- 10x latency reduction
 - Enables hybrid memory system
- Combines DRAM & SSD
 - Integration with OpenCL

Summary

- Rethink data center architecture to address scaling
- Need for workload acceleration FPGA acceptance
- SDAccel offers CPU/GPU development experience on FPGAs
- Xilinx demonstrating CAPI-based acceleration solutions
- Excited to drive Innovation through OpenPOWER
- Visit Xilinx Booth #913

Follow Xilinx on:

Join the conversation at #OpenPOWERSummit

Q&A

Join the conversation at #OpenPOWERSummit