=

D S H

T

Production-quality, final-frame
rendering on the GPU

Hello!

Company founded in 2012

Launched the first alpha in March 2013

Version 1.0 in March 2014
No marketing effort so far...

-~

.«

REDSHIFT

What is Redshift?

REDSHIFT

What is Redshift?

* Not “just another GPU renderer”
— Final-frame production quality
— Features and flexibility of biased CPU renderers
— Viable and practical for professionals
* High performance
— Many times faster than CPU renderers
* Great scalability
— 10s of millions of triangles in under GB of VRAM
— Limited available VRAM not a problem... -~

REDSHIFT

Breaking the Memory Barrier

* Virtually unlimited number and size of bitmap textures
* Out-of-core paging technology
e Built in UDIM/UVTILE texture tile support

REDSHIFT

Some Essentials

* Flexible material system
 Multiple ‘biased’ accelerated Gl modes
* Full samples control for noise clean-up

REDSHIFT

More Cool Features

Light/Shadow linking
Compositing
And many more

...... +.!—A | .

» Efficient volumetric scattering
* Vector displacement mapping
* Obiject visibility flags

REDSHIFT

STALLONE STATHAM BANDERAS LI SNIPES LUNDGREN GRAMMER COUTURE CREWS LUTZ
ROUSEY POWELL ORTIZ DAVI ..GIBSON ..FORD .SCHWARZENEGGER

o 2 ¢ 2
(© WINNER =) WINNER =) ~~ WINNER =)

; Y Y 3 NEW TEAM, NEW ATTITUDE,

7
y)
wsveaasrin N A camaLari ASHEVILLE CINEMA {944 unoercrouno M) NEW MISSION
\ FESTIVAL ‘\,), FESTIVAL FESTIVAL ‘\, \‘ FILM FESTIVAL Y
8 2014 /4 2014~ 2014 72 2014
N W 7|

REDSHIFT

o B
o B

Challenges : Out Of Core (1)

Allows scene data size exceed the GPU mem
limits

— Geometry and textures

GPU geometry/texture caches

What about direct CPU memory reads?
— Certain limitations prevented that

— Unified virtual addressing (UVA) needs pinned
memory

— Unified memory doesn’t work like a cache ﬂ

In the end, we designhed our own caching system
REDSHIFT

Challenges : Out Of Core (2)

Communication between the GPU and the CPU
— Stalls
— WDDM overheads
Blocking / granularity of data is important!
— Tiled mipmaps for textures
— Local primitive groups for geo
The GPU caches work really well with textures
— Great cache-hit ratios for tiled mipmaps!
Geometry can cause performance issues, though

— But we have some interesting ideas about that
— GTC2016 talk perhaps? ©

-~

.«

REDSHIFT

Challenges : Material/Shader System

More than 200 different shading nodes!

— Many combination possibilities!

— Hardcoded system would be insufficient

Original solution: recompile on shader graph edit

In the end: function pointers

— Each node is a function

— No slow recompilation needed

— Contemplating CUDA 7 runtime compilation

Efficient material blending/layering -~

— Incorporated importance sampling Ry ¢
REDSHIFT

Challenges : Multiple Kernels (1)

 Two schools of thought:
— Uber-kernel (single kernel launch) vs multiple kernel launches
— Different pros and cons
 Had to go with multiple kernels because:
— Out of core data access
— Multiple Gl modes
— Shading
* Reasons we didn’t go with uber-kernels:
— Compiler issues (bugs, long compilation times)
— Register pressure (also a compiler issue) P
— Hard to debug / profile > <

REDSHIFT

Challenges : Multiple Kernels (2)

* Splitting into multiple kernels benefits

— Helps with divergent branches:
* Sorting
* Rescheduling / Persistent threads
* Easier to do with multiple kernels than uber-kernels!

— Helps rapid prototyping of new code
* Drawbacks

— Overheads
— GPU underutilization -~
— Have to keep the GPU busy Ry

* Group as much work as possible REDSHIFT

Challenges : Ray Generation (1)

* The life of a ray (glossy reflective/refractive plane)
 So one camera ray = multiple reflection/refraction rays

Ny

| N
e

REDSHIFT

Challenges : Ray Generation (2)

* Alternative: Russian Roulette
— Instead of executing all possibilities, it picks fewer (or just one)
— Renders in “passes”

&2y 27
- | ~;\1 |
+ +
-~
. . , @

REDSHIFT

Challenges : Ray Generation (3)

Here we showed glossy reflection/refraction
— Can also be used for GlI, direct lighting, etc
Great for interactive (progressive) rendering!
Picking “the right rays” at each pass is hard!
— Several rendering techniques for this
— If the technique doesn’t do a good job = noise!
— ...and having to start a new ray from the camera
Russian roulette-style rendering is easy for artists
— Just a single “number of passes” setting
— No sample tweaking necessary on a per light or surface basis

REDSHIFT

Challenges : Ray Generation (4)

* Russian roulette simplifies several things in a renderer
— Popular choice among current GPU renderers
* Redshift works a bit differently
— Each ray can spawn multiple rays, when necessary
— This is what most “biased” CPU renderers do
— Certain scenes clean up faster and with fewer rays
— It gives artists more control over noise
* But Redshift can also do russian roulette!
— Used for progressive rendering
— Used depending on ray importance -~

REDSHIFT

Challenges : Ray Generation (5)

* Spawning multiple rays from a single ray is tricky!
— Trivial solution: spawn rays within a loop
* Hard to optimize / complicated kernel

* Can destroy coherency / performance
* There exist solutions, but are a bit messy

— Better: spawn rays that are processed in parallel!

* Job Queue
* Useful for material layering, multiple lights, etc

— Downside: Harder to manage memory
— Worth it!

.«

REDSHIFT

Challenges : CPU Performance (1)

* GPU can’t (currently) do everything by itself!

— Scene extraction from the 3D app
* Often times, single threaded!

— Disk/Network data loading
* Meshes / textures / etc

— Construction of ray tracing acceleration structures

— Tessellation

— Certain parts of our out-of-core algorithms

— Saving final images to disk o~

* DeepEXR saving can be slow! R, <
REDSHIFT

Challenges : CPU Performance (2)

* The faster the GPU rendering, the more the CPU performance
matters!

REDSHIFT

Challenges : CPU Performance (3)

e Solutions
— Speed up CPU processing (duh!)

* Multithread/optimize as much as possible!

* Cache/reuse data

* Involve the GPU more during preprocessing
* ...an ongoing effort for Redshift!

— Render a few frames at once
* Forces “multithreading” on CPU processing
* ...but consumes more main memory

REDSHIFT

The Future

3ds Max plugin currently in alpha!

Support for more DCCs (Cinema4D, Houdini, Modo, Blender)
Linux support (in progress)

Ray marching (hon-homogeneous volumetrics)

Single scattering

Shave/Yeti/XGen support in Maya

More BRDFs (GGX)

User AOVs (regular AOVs already supported)

User defined shader nodes (shader SDK)

More optimizations! a

REDSHIFT

Thanks!

* For more information, please contact us at
info@redshift3d.com

* Or meet us
— ...right after this presentation!
— ...at tonight’s welcome reception

— ...at our demo area in the GTC Expo hall:
— ...Booth #112 >~

.«

REDSHIFT

