Hybrid Simulations Using CPU-GPU Paradigm for Reacting Flows in

Accelerating Industrial Competitiveness through Extreme-Scale Computing

Acknowledgement: Vivek Venugopal, Hui Gao for helping to implement the GPU code

Special Thanks to

Dr. Ramanan Sankaran,

Dr. Suzy Tichenor & Dr. Jack Wells

Oak Ridge National Laboratories, USA.

Reactive flow adds a lot more PDEs to cold flow CFD

$$\frac{\partial \rho A}{\partial t} = \frac{\partial \rho u_i A}{\partial x_i} + \frac{\partial \rho V_i A}{\partial x_i} + \dot{\omega}_A$$

$$A = 1, u_i, e, Y_\mu; \ \mu = 1, \dots, N_s; i = 1, 2, 3$$

$$N_s \sim 40$$

Combustion adds a lot more PDEs, 9x cold flow

"Fuel+ $O_2 \rightarrow$ product+heat" has lot of paths, steps, and transcendental functions

ONE step:

$$H + O_2 + (M) \rightarrow HO_2 + (M)$$

$$\frac{dY_H}{dt} = k[H]^{\alpha} [O_2]^{\beta} [M]$$

$$k = k_{\infty} \left(\frac{\Pr}{1 + \Pr} \right) F$$

$$k_0 = A_0 T^{\beta_0} \exp(-E_0 / RT)$$

$$k_{\infty} = A_{\infty} T^{\beta_{\infty}} \exp(-E_{\infty} / RT)$$

$$\Pr = \frac{k_0[M]}{k}$$

$$\log(F) = \left(1 + \left(\frac{\log(\Pr) + c}{n - d(\log(\Pr) + c)}\right)^{2}\right)^{-1}\log(F_c)$$

$$F_c = (1-\alpha) \exp(-T/T^{***}) + \alpha \exp(-T/T^{**}) + \exp(-T/T^{**})$$

14 transcendental

 $c, n, d = \text{linear functions of } F_c$

~200-300 steps for jet fuel!

Performance of standalone GPU chem solver (explicit)

Performance of standalone GPU chem solver (implicit)

Operator splitting in CFD > thread the chemistry compute

Integrate terms in tandem

$$\frac{\partial \rho A}{\partial t} = \frac{\partial \rho u_i A}{\partial x_i} + \frac{\partial \rho V_i A}{\partial x_i} + \frac{\dot{\omega}_A}{\dot{\omega}_A}$$
Independent of neighbors

Collect from many cells and do threading

Overall acceleration depends on chem. compute load

domain decomposition -> CPU transport, GPU chemistry

GPU-CPU hybrid code tested on shear layer turbulent flame

3D Direct Numerical Simulation

- 1. fully compressible reactive code
- 2. detailed chemical kinetics
- 3. detailed multicomponent transport
- 4. three dimension
- all scales fully resolved

GPU chemistry hidden completely

CPU only runs → chemistry takes a lion's share (12 scalars)

GPU: 83% to 7% reduction in chemistry compute load

Strong scalability of CPU-GPU hybrid

Weak scalability of CPU-GPU hybrid good up to 64M cells

Looking forward: GPU-CPU hybrid is a significant tech. enabler

doable with

Tune existing or create new turbulent-chemistry model

http://www.happynews.com/news/11142008/visualizing-unseen-forces-turbulence.htm

This page contains no technical information subjected to EAR and ITAR

