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BACKGROUND 
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Background 

 Partnership with Oak Ridge National Laboratory’s Leadership 

Computing Facility 

 Utilize large scale DoE hardware at OLCF to improve development 

time of new turbomachinery designs 

 Commercial software package 

 The Fine/Turbo suite 

• CFD tools for high fidelity turbomachinery analysis 

• Advanced features for fast, high fidelity simulations 

 Software development program 

 Jointly funded 

 Time-allocation through DD and ALCC 
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Background – Software Developments 

 Virtual decomposition of the multi-

block grid 

 Distributed memory parallel 

computing with MPI 

 I/O improvements 

 Parallelization of turbomachinery 

related BC 

 Efficient scalability with up to 4000 

compute processes 

 Ongoing effort 
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Application Strategy 

 Turbomachinery R&D 

 Time frame for design and development 

 Parametric optimization 

 Ensemble runs for database generation 

 Design refinement 
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TITAN FOCUSSED 

DEVELOPMENT 
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GPU Strategy 

 Utilization of new GPU hardware on Titan 

 Software Limitations 

 Industrial Limitations 

 Cost of rewriting the solver 

 Investigated alternatives 

 Selection of appropriate code module for acceleration 
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GPU Accelerated Module 
 Advanced residual smoothing algorithm, bringing a level of 

implicitness to the time integration solver 

 Permits the use of high CFL numbers 

 Yields a drastic decrease in the number of iterations needed for 

convergence (~4x) 

 Time per iteration is increased due to the additional module 

arithmetic (~2x) 

 Attractive candidate for threaded execution, either on CPU or 

GPU 
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Hardware and Software 

Considerations 

 Titan nodes are equipped with PCIe 2.0 

 Each node contains 16 CPU cores, all of which will 

simultaneously transfer data to a single GPU 

 Bandwidth in/out of the GPU is a bottleneck 

 GPU memory is also a limitation for larger 

computations 

 OpenACC programming model 

 Directive based approach for usability and ease of 

maintainance 
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Test Case Performance 

11 

Typical sample speedup of 1.25x, maximum of 1.7x. 

 Positive speedup of 

1.25x observed during 

execution of typical 

sample model 

 Speedup dependence 

on internal boundary 

conditions 

 Peak speedup of 1.7x 

observed for conformal 

BC model 
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IO Performance 
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Order of magnitude increase in write speed. 
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APPLICATIONS 
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Open Science 

 Supersonic inlet/isolator 

model 

 Shockwave boundary layer 

interaction 

 Conformal block boundaries 

 Experimental comparison 

 On-going work 
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Supersonic inlet/isolator simulation 

utilizing GPU developments 
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Optimization 
 D-R utilizes optimization techniques for enhancing 

turbomachinery design 

 Results for perturbed database designs 

 Analyze multi-dimensional data 

 Database refinement and design selection 

 Tolerance sensitivity 
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Titan – An enabling technology for accelerating 

turbomachinery R&D.  
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Impact on Time-to-Solution 
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Summary 

 Development efforts to enable scalable solver execution 

on OLCF hardware. 

 The GPU acceleration of the solver module 

 The CPUBooster convergence acceleration module 

ported to GPU 

 Restructuring and instrumentation of the CPUBooster 

module with OpenACC directives has yielded a global 

iteration speedup of 1.2X-1.7X 

 With proper code restructuring, OpenACC allows easy 

GPU acceleration 

17 



©
 C

o
p
y
ri
g

h
t 

2
0
0
9

 

Summary 

 The use of the CPUBooster module along with the Titan 

GPUs results in a 2.5X decrease in turnaround time and 

resource usage for D-R’s optimization work.  

 Large scale optimization related simulations are feasible 

due to availability of access to Titan 

 Successful porting of the CPUBooster module has led 

to a new development program to port additional solver 

modules to execute on GPUs. 
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Questions 


