SPARSE FLUID SIMULATION A
IN DIRECT X

ALEX DUNN - NVIDIA - DEV. TECH.

AGENDA

> Fluid in games.
- Eulerian (grid based) fluid.
- Sparse Eulerian Fluid.

> Feature Level 11.3 Enhancements!

WHY DO WE NEED FLUID IN GAMES?

- Replace particle kinematics!
> more realistic == better immersion
> Game mechanics?
~ occlusion
- smoke grenades
~ physical interaction
~ Dispersion
- air ventilation systems

~ poison, smoke

» Endless opportunities!

EULERIAN SIMULATION #1

My (simple) DX11.0 eulerian fluid simulation:

2X Velocity

Advect

Pressure L._,I 1 :'__'_"_-_: 2X Pressure

Vorticity

1x Vorticity

Evolve

EULERIAN SIMULATION #2

» Add fluid to simulation
el > Move data at, XYZ 2> (XYZ+Velocity)

ZUeHl > Calculate localized pressure

Vorticity > Calculates localized rotational flow

Evolve » Tick Simulation

(some imagination required)

TOO MANY VOLUMES SPOIL THE...

> Fluid isn’t box shaped.
- clipping
~ wastage

> Simulated separately.
- authoring
» GPU state
> no volume-to-volume interaction

- Tricky to render.

PROBLEM!

> N-order problem

- 64”3 =-~0.25m cells
» 128"%3 = ~2m cells

- 256”3 = ~16m cells

- Applies to:
- computational complexity
© memory requirements

256 512 768 1024
Dimensions (X = Y = Z)

And that’s just 1 texture...

BRICKS

- Split simulation space into groups of cells (each known
as a brick).

- Simulate each brick independently.

T

BRICK MAP

> Need to track which bricks contain fluid

Texture3D<uint>

~ 1 voxel per brick n-
> 0 - Unoccupied
» 1 = Occupied

- Could also use packed binary grids [Gruen15], but this requires
atomics &

TRACKING BRICKS

> Initialise with emitter

~ Expansion (unoccupied > occupied)

]f{V|X|y|Z| > |Dbrick| }
- expand in that axis

- Reduction (occupied - unoccupied)
- inverse of Expansion
> handled automatically

SPARSE SIMULATION

Clear Bricks Reset all bricks to

0 (unoccupied) in
brick map.

Advect

Texture3D<uint> BrickMapRO;
FIESSUIE Read value from extures 9— PRO;

brick map. AppendStructredBuffer<uint3> g_L1iStRW;

Vorticity

. _ .
Append brick if(g_Brickmapro[idx] != 0)

coordinate to list {

) : g_ListRwW.Append(idx);
Fill List if occupied. }

*Includes expansion

UNCOMPRESSED STORAGE

Allocate everything; forget
about unoccupied cells ®

Pros:

« simulation is coherent in memory.
« works in DX11.0.

Cons:
no reduction in memory usage.

COMPRESSED STORAGE

Indirection Table

iy ...

Phisical Memori

Similar to, List<Brick>

Pros:

« good memory consumption.
« works in DX11.0.

Cons:
allocation strategies.
indirect lookup.
“software translation”
filtering particularly costly

= 64

™M
—~
4
~—
Il
Y4
O
-
m
i

216

Il -
o @
Fa)
~
il
+ a
N 0
+ e
— E +
~— mn
QN
[l SR
Y o +
@) >~
- o £
m Nwo
—i . .

N N NN

[
%—a.u.ﬂ.!...amE
I Ny

N

Can we do better?

ENTER; FEATURE LEVEL 11.3

> Volume Tiled Resources (VTR)! ©
~ Extends 2D functionality in FL11.2
> Must check HW support: (DX11.3 !=FL11.3)

* pbDevice3 = nullptr;

pDevice-> (&pDevice3);
support;
pDevice3-> ¢
&support,
sizeof (support));

m_UseTiledResources = support.TiledResourcesTier ==
D

TILED RESOURCES #1

Tiled Tile Physical
Resource Pool Memory

Pros:

only mapped memory is
allocated in VRAM

“hardware translation”
logically a volume texture
all samplers supported
1 Tile = 64KB (= 1 Brick)

fast loads

TILED RESOURCES #2

Tile Physical
Pool Memory

1 Tile = 64KB (= 1 Brick)

BPP Tile Dimensions
| — D | 2 - 8 64x32x32
a B : = | 4 A 16 39%32x32
' - 32 32x32x16
64 32x16x16
128 16x16x16

Gotcha: Tile mappings must be updated from CPU

CPU READ-BACKS

» Taboo in real time graphics

» CPU read-backs are fine, if done correctly!
~ (and bad if not)

~ 2 frame latency (more for AFR in SLI)
~ Profile map/unmap calls

N; N+1; N+2;
Data Ready Data Ready Data Ready

| ! |

CPU: Frame N | Frame N+1 | Frame N+2 | Frame N+3

GPU: Frame N Frame N+1 @ Frame N+2

N; Tiles Mapped

LATENCY RESISTANT SIMULATION #1

Naive Approach:

- clamp velocity to V
> CPU Read-back:

» occupied bricks.

~ 2 frames of latency!
- extrapolate “probable” tiles.

max

LATENCY RESISTANT SIMULATION #2

Tight Approach:
~ CPU Read-back:
» occupied bricks.
- max{|V]|} within brick.
~ 2 frames of latency!
~ extrapolate “probable” tiles.

LATENCY RESISTANT SIMULATION #3

CPU
Readback
Ready?

Sparse
Eulerian
Simulation

Prediction
Engine

UpdateTile
Mappings

DEMO

PERFORMANCE #1

64.7
m
E
()
£
l—
o 19.9

£
wn

2.3 6.0

1.8 2.7 2.9
0-4 — | || ._
128 256 384 512 1024

Grid Resolution

Full Grid
m Sparse Grid

Num. Bricks
Memory (MB)
Simulation

Num. Bricks
Memory (MB)
Simulation

Scaling Sim.

Grid Resolution
384° 512°
Full Grid

256 48 6.912 16,384
&) 2,160 5,120

2.29ms 64.71ms NA

Sparse Grid

183
57.19
2.67ms

11.25
0.41ms

2.94ms

75.01% NA

NOTE: Numbers captured on a GeForce GTX980

1,024°

131,072
40,960
NA

PERFORMANCE #2

Grid Resolution

Memory (MB)

40,960
256° 384 5123 1,024
5,120 Full Grid
2,160 oo
640 Num. Bricks 256 2048 6,912 16,384 131,072
Memory (MB) 80 640 2,160 5,120 40,960
80 138 Simulation 2.29ms 19.04ms 64.71ms NA NA
Full Grid Sparse Grid
11 . Num. Bricks 36 146 183 266 443
[|) T) -)))
Sparse Gr]d Memory (MB) 11.25 45.63 57.19 83.13 138.44
Simulation 0.41ms 1.78ms 2.67ms 2.94ms 5.99ms
Scaling Sim. 8. 14% 76.46% 75.01% NA NA
128 512 1024

Grld Resolution

NOTE: Numbers captured on a GeForce GTX980

SCALING

Ti Full
Ratio (in time) of 1 Brick = —metr4

Time{Sparse}

»~75% across grid resolutions.

Grid Resolution

1283 256° 3843 5123 1,024°

Scaling Sim. | 78.14% 76.46% 75.01% NA NA

SUMMARY

- Let’s see more fluid in games.

~ Fluid is not box shaped!

> One volume is better than many small.

- Un/Compressed storage a viable fallback.
- CPU read-backs are useful if done right!

» VTRs great for fluid simulation.

» Other latency resistant algorithms with tiled resouces?

THANK YOU

JOIN THE CONVERSATION
#GTC15 ¥ f B

» ALEX DUNN - ADUNN@NVIDIA.COM
> TWITTER: @ ALEXWDUNN

mailto:adunn@nvidia.com

