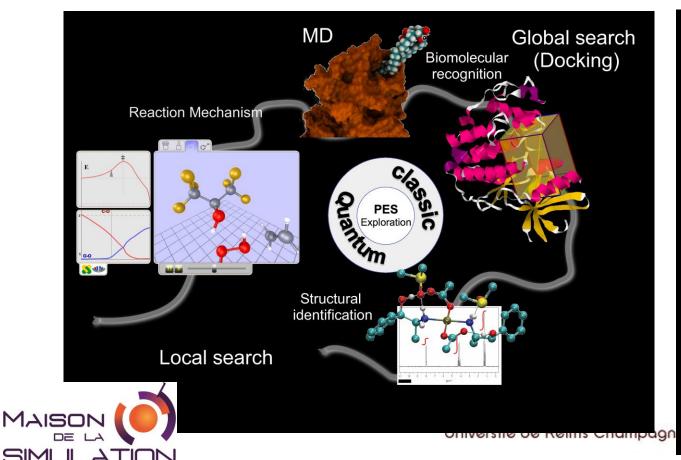
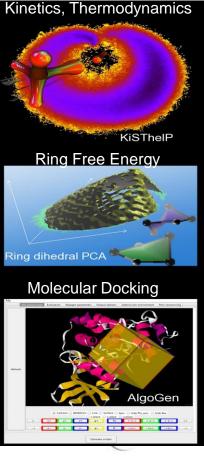
Acceleration of a Molecular Modelling Code for the Analysis and Visualization of Weak Interactions between Molecules

A. Roussel, J-C.Boisson, H. Deleau, M. Krajecki and E. Hénon



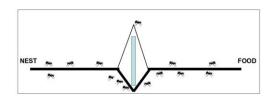
Modeling Activities: ICMR Lab


ICMR = Experimental laboratory « augmented » by theoretical calculations

Applied theoretical chemistry

de Champagne-Ardenne

Models & Prog.


Modeling Activities: CReSTIC Lab

CReSTIC = computer science laboratory

Parallel and distributed algorithms

→ Combinatorial optimisation (genetic algorithm, ant/bee colony)

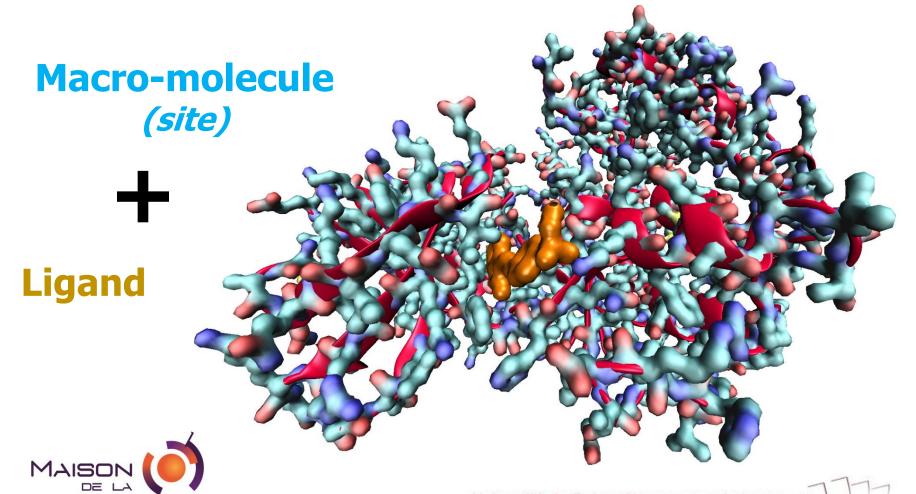
→ Parallel algorithms for GPU acceleration URCA = the first CUDA Research Center in France

High-Performance Computing

High-Performance Molecular Modeling

Outline

Context: docking and scoring functions


Methods: AlgoGen, NCI

NCI scoring function on GPU

Conclusions and perspectives

Docking

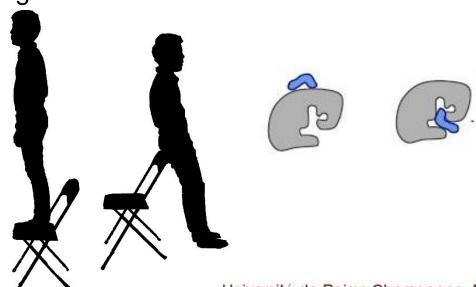
de Champagne-Ardenne

Combination of:

A solution representation

⇔quaternion, torsion, ...

An associated search space according to data


flexibility

- An associated search space according to data flexibility:
 - No flexibility ⇔ rigid docking:
 - Key / lock paradigm
 - Basic good interaction information

- An associated search space according to data flexibility:
 - No flexibility ⇔ rigid docking:
 - Key / lock paradigm
 - Basic good interaction information
 - Ligand flexibility
 semi-flexible docking:
 - Conformation adaptation of the ligand to fit the site

- An associated search space according to data flexibility:
 - No flexibility ⇔ rigid docking:
 - Key / lock paradigm
 - Basic good interaction information
 - Ligand flexibility
 semi-flexible docking:
 - Conformation adaptation of the ligand to fit the site
 - - Case of unapproachable site.
 - Depending of the molecule size: from conformation
 adaptation of the lateral chains to backbone folding

de Champagne-Ardenne

- An optimization procedure:
 - Only one method:
 - genetic algorithm, ant/bee colony, ...
 - cooperative approaches:
 - Lamarckian algorithm, ...
- A scoring function
 - evaluation of the ligand/site complex quality
 - energy (main objective)

- Parameterized force field:
 - Empirical definition of molecular interactions
 - Pros:

- Very fast ⇔ only few seconds on big systems
- Well integrated in tool suite: Autodock, Glide, ...
- Enables full-flexible docking

- Parameterized force field:
 - Empirical definition of molecular interactions

- Cons:

- Each molecular family ⇔ specific parameters
- Not able to describe all realistic interactions
- Substantial input preparation needed

- Quantum mechanics:
 - Strict exploitation of electronic information
 - Pros:
 - No need of (empirical) parameters
 - All the interactions can be described
 - No specific input preparation

- Quantum mechanics:
 - Strict exploitation of electronic information
 - Cons:
 - Very (very) slow: several hours to days for small systems
 - Not (yet) dedicated for docking analysis:
 - ⇔Rigid docking only

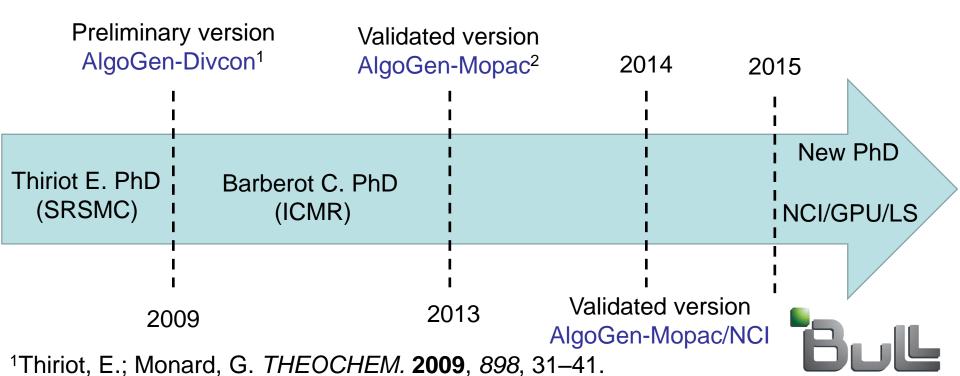
Outline

Context: docking and scoring functions

Methods: AlgoGen, NCI

NCI scoring function on GPU

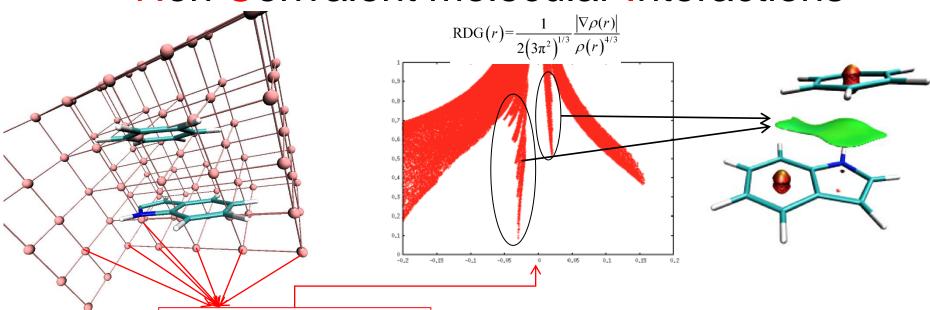
Conclusions and perspectives


AlgoGen

 Framework for rigid quantum docking based on:

- A genetic algorithm as optimization method
- No specific evaluation scoring:
 - Divcon, Mopac, ...
 - Gaussian, ...
- A master/slave parallel model

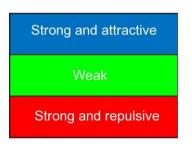
Algogen

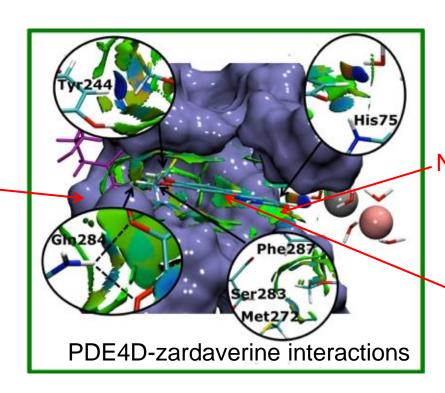

²Barberot and al., Comp.Theor. Chem. **2014**, *1028*, 7-18.

NCI

New method to predict, visualize and interprete
 Contreras-Garcia, J. and al, J. Phys. Chem. A. 2011,115, 12983.

Non Convalent molecular Interactions

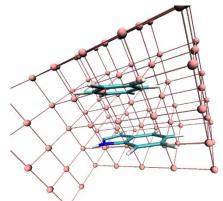

Electron density $\rho(r)$ Electron density gradient $\nabla \rho(r)$ Electron density hessien


Université de Reims Champagne-Ardenne

NCI Post-treatment

PhosphoDiesterase 4D-

NCI interaction surfaces


Zardaverine inhibitor

NCI as a score

- NCI: based on a grid of atom interactions describing attraction/repulsion forces
- Each point can be computed individually

Natural parallel scheme:

→ from NCI grid to GPU grid

Outline

Context: docking and scoring functions

Methods: AlgoGen, NCI

NCI scoring function on GPU

Conclusions and perspectives

Methodology

Direct use of Fortran code to CUDA

 Isolation of specific structures and transformation to one-dimension arrays

Thread repartition with redundant calculi

Input data

 Test on 3 quantum instances +1 molecular docking instance (CCDC Astex dataset)

Instance Name	Number of atoms in the NCI Grid
3bench2	313
4bench3	326
5bench4	497
6rsa	1666

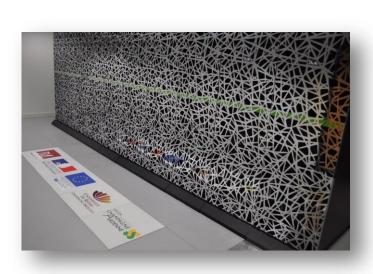
Romeo HPC Tesla Cluster

Computing

Displaying

5th 3131 MFLOPS/W Bull Cool Cabinet Door

151th 254.9 Tflops Linpack



260 NVIDIA Tesla **K20X** accelerators

130 Bull servers
bullx R421 E3 – Bull AE & MPI

260 INTEL Ivy Bridge E5-2650 v2 Processor, non-blocking **Mellanox Infiniband,** Slurm, 88 To Lustre (NetApp), 57 To home, 100 To Storage

Big Data, on-demand and remote

VirtualGL technology servers Quadro 6000 & 5800

NVIDIA GRID + Citrix Virtualisation NVIDIA VGX K2

Scalable Graphics 3D cloud solution NVIDIA K6000

GPU Accelerator

- Nvidia Tesla K20X (Kepler):
 - 2688 processor cores
 - -6 GB GDDR5

- Peak performance:
 - 1.31 Tflops (double-precision floating point)
 - 3.95 Tflops (single-precision floating point)

Proof of concept results

- CPU Intel Ivy Bridge (8 cores) vs Tesla K20X:
 - Equivalent purchase and exploitation price
- Sequential CPU vs:
 - OpenMP (8): computation time / 4
 - Tesla K20X: computation time / 300
- OpenMP (8) vs Tesla K20X
 - Computation time / 75

AlgoGen NCI GPU

- Extrapolated results:
 - AlgoGen NCI (on a small system)
 - CPU version ⇔ 16000 evaluations * 2min
 - → 22 days
 - GPU version ⇔ 16000 evaluations * 0.4 s
 - → < 2h

Outline

Context: docking and scoring functions

Methods: AlgoGen, NCI

NCI scoring function on GPU

Conclusions and perspectives

Conclusions and perspectives

The proof of concept is valid

- Next steps:
 - Production phase

- Pipeline of evaluations
- NCIPLOT code extraction and optimization

Conclusions and perspectives

- Application of NCI to docking
 - submitted French ANR project by NCI authors (E-NERGY).
- New PhD:
 - New scoring methods
 - Including collaboration with the authors of DFTB codes (CSC group, Brême, Germany; LCPQ Toulouse, France, LCT group, Paris, France)
 - Flexibility management
 - Including collaboration with Marie Brut (LAAS Toulouse)

