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ArrayFire

e CUDA and OpenCL experts

o since 2007
e Headquartered in Atlanta, GA
e |n search for the best and the brightest

e EXxpert domain experience in a wide variety of fields
o Computer Vision
o Machine Learning
o Financial
o etc



ArrayFire Consulting Services

e Custom software development services

e Deep experience working with thousands of

customers
o Analysis
o Acceleration
o Algorithm development

e EXxpert software engineers

o Large scale software development experience
o Production quality code
o Extensive domain knowledge



ArrayFire Training

e 2-4 Day CUDA or OpenCL training

o On site or at our headquarters

e Taught by a performance engineer by your side
o We have seen it all and know how to fix things

e Hands on labs
o You will not be copying code
o Run on GPU hardware

e Customized for your application
o Examples target your use-case

e Only C/C++ experience required



ArrayFire the Library

A general purpose computational library
Backends for CUDA, OpenCL and CPU

Cross Platform

Open Source (BSD - 3 - clause)

Concentrate on performance and ease of use
JIT

Hundreds of Functions



Machine Learning

e Excellent for modeling highly dimensional data
o Pattern recognition
o Decision making

e Requires lots of data for good results



MNIST Dataset

e Dataset of handwritten digits
e 00,000 samples from ~250 writers
e 28x28 grayscale pixels
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Loading MNIST

array train_images, train_targets;

array test images, test targets;

int num_train, num_test, num_classes;

// Load mnist data
setup _mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images,

train_targets, test_targets, 1.0); Labels
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Perceptron

e Introduced in the late 1950's
e Linear classifier
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Teaching a Perceptron

e Initialize weights to zero
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ArrayFire API

e Creating arrays in ArrayFire

array zeros = constant(@, 5); // ©
// ©
// ©
// ©
// ©

array zeros2D = constant(e, 2, 3);



Perceptron

//Initialize weights to ©
const int pixel count = 28*28; //train feat.dims(1);
const int num_labels = 10; //train_targest.dims(1);

array weights = constant(9, pixel count, num_labels);



Teaching a Perceptron

e Initialize weights to zero
e (enerate response



e Sum of the input multiplied by the weights

response(p) = szpz

e Send result into an activation function

1

S(t) = 1+ et




e Flatten Images
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ArrayFire API

e Reshaping volume into a matrix

// Reshape images into feature vectors
array out = moddims(in, dim@, diml, dim2, dim3);

// Reshape images into feature vectors
array train_feats = moddims(train_images, pixel count, num_train);



// Reshape images into feature vectors

moddims(train_images, pixel count, num_train);

array train_feats
moddims(test_images , pixel count, num_test );

array test feats



Pixels(784)
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Matrix Multiply!
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ArrayFire API

array response = matmul(weights, train_feats);



Activation Function

e Sigmoid Function

// Activation function

array sigmoid(const array &val)

{
return 1 / (1 + exp(-val));

}



Prediction

array prediction = sigmoid(matmul(weights, train_feats));



Teaching a Perceptron

e Initialize weights to zero
e (enerate response
e Update weights



Calculating Error

e Subtract the expected output with prediction
e Multiply with the learning rate

Aw = afexpected, — prediction,) * pixel;

array err = train_targets - prediction;
weights += learning_rate * (matmulNT(err, train_feats));



Teaching a Perceptron

e Initialize weights to zero
e (enerate response

e Update weights

e Repeat



for(int i = 0; i < 100; i++)

{

array prediction = sigmoid(matmul(weights, train_feats));

array err = train_targets - prediction;

float mean_abs_error = mean<float>(abs(err));

printf("err: %0.4f\n", mean_abs_error);

weights += learning rate * (matmulNT(err, train_feats));



Measure Accuracy

float accuracy(const array& predicted, const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 0);
max(val, plabels, predicted, 90);
return 100 * count<float>(plabels == tlabels) / tlabels.elements();

82.03%



Perceptron

e |Improvements
o Smaller batches
o Variable learning rate

e Linear Classifier!
o Handwritten digit recognition cannot be solved by a linear classifier

e Additional layers are required



Neural Networks

e Made up of one or more layers of neurons
e Hidden layers updated using back propagation




Back Propagation

Hidden layers do not have an expected output
Calculating error on output

Send in data from the output layer back into network
Gradient descent



Back Propagation

void ann::back_propagate(const vector<array> signal, const array &target, const double &alpha){
// Get error for output layer
array out = signal[num_layers - 1];
array err = (out - target);
int m = target.dims(9);
for (int i = num_layers - 2; i >=0; i--) {
array in = add_bias(signal[i]);

array delta = (deriv(out) * err).T();

// Adjust weights
array grad = -(alpha * matmul(delta, in)) / m;
weights[i] += grad.T();

// Input to current layer is output of previous
out = signal[i];
err = matmul(weights[i], delta).T();

// Remove the error of bias and propagate backward

err = err(span, seq(l, out.dims(1)));



e Accuracy: 93.90%
e Time: 31.30 seconds
e Epoch: 250



Back Propagation

e [Effective
e Slow for deeper networks
e Requires labeled data



Deep Belief Nets

e A neural network made of multiple layers Restricted
Boltzmann Machines
e Deep belief networks are great with unlabeled data

Labels RBM




Restricted Boltsmann Machine

e A neural network with one hidden
l'ayer Hidden
e Each hidden neuron is connected to

every visible neuron
e The connection has a weight which
represents how strongly the neuron

reacts to that input Visible
e A bias is associated with both
hidden and visible neurons



Restricted Boltsmann Machine

Data Representation

Visible Layers Hidden
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Lets create our RBM

class rbm
{
array weights;
array h_bias;
array v_bias;
public:
rbm(visible_size, hidden_size)
: weights(  constant(0, hidden_size, visible_size))
, h_bias( constant(0, 1, hidden_size))
, V_bias( constant(0, 1, visible_size))

{}

Visible



Training RBM

Feed input into RBM

Calculate the response

Feed the response back through the network
Calculate the error of the reconstruction
Adjust the weights



Building the DBN

e Feed the output of the previous layer to the next
e | earns higher level features
e Use back propagation to fine tune the data



e Accuracy. 93.46%
e [ime: 13.27 seconds
e Epoch: 108



Improvements

More data
Larger network
Learning rate
Longer iterations






