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Simplified Machine Learning for CUDA



ArrayFire

● CUDA and OpenCL experts
○ since 2007

● Headquartered in Atlanta, GA
● In search for the best and the brightest
● Expert domain experience in a wide variety of fields

○ Computer Vision
○ Machine Learning
○ Financial
○ etc.



ArrayFire Consulting Services

● Custom software development services
● Deep experience working with thousands of 

customers
○ Analysis
○ Acceleration
○ Algorithm development

● Expert software engineers
○ Large scale software development experience
○ Production quality code
○ Extensive domain knowledge



ArrayFire Training

● 2-4 Day CUDA or OpenCL training
○ On site or at our headquarters

● Taught by a performance engineer by your side
○ We have seen it all and know how to fix things

● Hands on labs
○ You will not be copying code
○ Run on GPU hardware

● Customized for your application
○ Examples target your use-case

● Only C/C++ experience required



ArrayFire the Library

● A general purpose computational library
● Backends for CUDA, OpenCL and CPU
● Cross Platform
● Open Source (BSD - 3 - clause)
● Concentrate on performance and ease of use
● JIT
● Hundreds of Functions



Machine Learning

● Excellent for modeling highly dimensional data
○ Pattern recognition
○ Decision making

● Requires lots of data for good results



MNIST Dataset

● Dataset of handwritten digits
● 60,000 samples from ~250 writers
● 28x28 grayscale pixels

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning 
applied to document recognition." Proceedings of the IEEE, 86(11):2278-
2324, November 1998



Width

Loading MNIST
   array train_images, train_targets;

   array test_images, test_targets;

   int num_train, num_test, num_classes;

   // Load mnist data

   setup_mnist<true>(&num_classes, &num_train, &num_test,

                     train_images, test_images,

                     train_targets, test_targets, 1.0);
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Perceptron

● Introduced in the late 1950’s
● Linear classifier
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Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Calculate error
● Update weights
● Repeat
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ArrayFire API

● Creating arrays in ArrayFire

array zeros   = constant(0, 5);    // 0
     // 0

  // 0
  // 0
  // 0

array zeros2D = constant(0, 2, 3); // 0, 0, 0
       // 0, 0, 0



Perceptron
   //Initialize weights to 0

   const int pixel_count = 28*28;  //train_feat.dims(1);

   const int num_labels = 10;      //train_targest.dims(1);

   array weights = constant(0, pixel_count, num_labels);



Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Calculate error
● Update weights
● Repeat



Response

● Sum of the input multiplied by the weights

● Send result into an activation function



Response
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ArrayFire API

● Reshaping volume into a matrix

// Reshape images into feature vectors
    array train_feats = moddims(train_images, pixel_count, num_train);

// Reshape images into feature vectors
    array out = moddims(in, dim0, dim1, dim2, dim3);



Response

    // Reshape images into feature vectors

    array train_feats = moddims(train_images, pixel_count, num_train);

    array test_feats  = moddims(test_images , pixel_count, num_test );
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ArrayFire API

    array response = matmul(weights, train_feats);



Activation Function

● Sigmoid Function

// Activation function

array sigmoid(const array &val)

{

   return 1 / (1 + exp(-val));

}



Prediction

array prediction = sigmoid(matmul(weights, train_feats));



Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Update weights
● Repeat



Calculating Error

● Subtract the expected output with prediction
● Multiply with the learning rate

array err = train_targets - prediction;
weights += learning_rate * (matmulNT(err, train_feats));



Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Update weights
● Repeat



Repeat

   for(int i = 0; i < 100; i++)

   {

       array prediction = sigmoid(matmul(weights, train_feats));

       array err = train_targets - prediction;

       float mean_abs_error = mean<float>(abs(err));

       printf("err: %0.4f\n", mean_abs_error);

       weights += learning_rate * (matmulNT(err, train_feats));

   }



Results

Measure Accuracy

float accuracy(const array& predicted, const array& target)                                                                             

{                                                                                                                                       

   array val, plabels, tlabels;

   max(val, tlabels, target, 0);                                                                                                                                 

   max(val, plabels, predicted, 0);                                                                                                    

   return 100 * count<float>(plabels == tlabels) / tlabels.elements();                                                                 

}

82.03%



Perceptron

● Improvements
○ Smaller batches
○ Variable learning rate

● Linear Classifier!
○ Handwritten digit recognition cannot be solved by a linear classifier

● Additional layers are required



Neural Networks

● Made up of one or more  layers of neurons
● Hidden layers updated using back propagation

Inputs Outputs



Back Propagation

● Hidden layers do not have an expected output
● Calculating error on output
● Send in data from the output layer back into network
● Gradient descent



Back Propagation
void ann::back_propagate(const vector<array> signal, const array &target, const double &alpha){

   // Get error for output layer

   array out = signal[num_layers  - 1];

   array err = (out - target);

   int m = target.dims(0);

   for (int i = num_layers - 2; i >= 0; i--) {

       array in = add_bias(signal[i]);

       array delta = (deriv(out) * err).T();

       // Adjust weights

       array grad = -(alpha * matmul(delta, in)) / m;

       weights[i] += grad.T();

       // Input to current layer is output of previous

       out = signal[i];

       err = matmul(weights[i], delta).T();

       // Remove the error of bias and propagate backward

       err = err(span, seq(1, out.dims(1)));

   }

}



Results

● Accuracy: 93.90%
● Time: 31.30 seconds
● Epoch: 250



Back Propagation

● Effective
● Slow for deeper networks
● Requires labeled data



Deep Belief Nets

● A neural network made of multiple layers Restricted 
Boltzmann Machines

● Deep belief networks are great with unlabeled data

RBM
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Labels



Restricted Boltsmann Machine

● A neural network with one hidden 
layer

● Each hidden neuron is connected to 
every visible neuron

● The connection has a weight which 
represents how strongly the neuron 
reacts to that input

● A bias is associated with both 
hidden and visible neurons

Visible

Hidden



Restricted Boltsmann Machine
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RBM

Lets create our RBM

class rbm
{

array weights;
array h_bias;
array v_bias;

public:
rbm(visible_size, hidden_size)

: weights( constant(0, hidden_size, visible_size))
, h_bias( constant(0, 1, hidden_size))
, v_bias( constant(0, 1, visible_size))

{} 
};

Visible



Training RBM

● Feed input into RBM
● Calculate the response
● Feed the response back through the network
● Calculate the error of the reconstruction
● Adjust the weights



Building the DBN

● Feed the output of the previous layer to the next
● Learns higher level features
● Use back propagation to fine tune the data



Results

● Accuracy: 93.46%
● Time: 13.27 seconds
● Epoch: 108



Improvements

● More data
● Larger network
● Learning rate
● Longer iterations



Questions


