
Umar Arshad @arshad_umar
Arrayfire @arrayfire

Simplified Machine Learning for CUDA

ArrayFire

● CUDA and OpenCL experts
○ since 2007

● Headquartered in Atlanta, GA
● In search for the best and the brightest
● Expert domain experience in a wide variety of fields

○ Computer Vision
○ Machine Learning
○ Financial
○ etc.

ArrayFire Consulting Services

● Custom software development services
● Deep experience working with thousands of

customers
○ Analysis
○ Acceleration
○ Algorithm development

● Expert software engineers
○ Large scale software development experience
○ Production quality code
○ Extensive domain knowledge

ArrayFire Training

● 2-4 Day CUDA or OpenCL training
○ On site or at our headquarters

● Taught by a performance engineer by your side
○ We have seen it all and know how to fix things

● Hands on labs
○ You will not be copying code
○ Run on GPU hardware

● Customized for your application
○ Examples target your use-case

● Only C/C++ experience required

ArrayFire the Library

● A general purpose computational library
● Backends for CUDA, OpenCL and CPU
● Cross Platform
● Open Source (BSD - 3 - clause)
● Concentrate on performance and ease of use
● JIT
● Hundreds of Functions

Machine Learning

● Excellent for modeling highly dimensional data
○ Pattern recognition
○ Decision making

● Requires lots of data for good results

MNIST Dataset

● Dataset of handwritten digits
● 60,000 samples from ~250 writers
● 28x28 grayscale pixels

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning
applied to document recognition." Proceedings of the IEEE, 86(11):2278-
2324, November 1998

Width

Loading MNIST
 array train_images, train_targets;

 array test_images, test_targets;

 int num_train, num_test, num_classes;

 // Load mnist data

 setup_mnist<true>(&num_classes, &num_train, &num_test,

 train_images, test_images,

 train_targets, test_targets, 1.0);

H
ei

gh
t

Samples

Images

2 8 6

Labels

...

7
Samples

Perceptron

● Introduced in the late 1950’s
● Linear classifier

W1

W2

W3

W4

W5

W6

W7

W8

Activation Function

Output

Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Calculate error
● Update weights
● Repeat

Perceptron

Weights

C
la

ss
es

Pixels

Pixels(784)

Classes(10)

ArrayFire API

● Creating arrays in ArrayFire

array zeros = constant(0, 5); // 0
 // 0

 // 0
 // 0
 // 0

array zeros2D = constant(0, 2, 3); // 0, 0, 0
 // 0, 0, 0

Perceptron
 //Initialize weights to 0

 const int pixel_count = 28*28; //train_feat.dims(1);

 const int num_labels = 10; //train_targest.dims(1);

 array weights = constant(0, pixel_count, num_labels);

Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Calculate error
● Update weights
● Repeat

Response

● Sum of the input multiplied by the weights

● Send result into an activation function

Response

Width

H
ei

gh
t

Samples

Images

● Flatten Images

Samples

P
ix

el
s

...

ArrayFire API

● Reshaping volume into a matrix

// Reshape images into feature vectors
 array train_feats = moddims(train_images, pixel_count, num_train);

// Reshape images into feature vectors
 array out = moddims(in, dim0, dim1, dim2, dim3);

Response

 // Reshape images into feature vectors

 array train_feats = moddims(train_images, pixel_count, num_train);

 array test_feats = moddims(test_images , pixel_count, num_test);

Response
C

la
ss

es
(1

0)

Pixels(784)

...
P

ix
el

s(
78

4)

C
la

ss
es

(1
0)

=

Samples

Samples

Response
C

la
ss

es
(1

0)

Pixels(784)

...
P

ix
el

s(
78

4)

C
la

ss
es

(1
0)

=

Samples

Samples

Response
C

la
ss

es
(1

0)

Pixels(784)

...
P

ix
el

s(
78

4)

C
la

ss
es

(1
0)

=

Samples

Samples

Response
C

la
ss

es
(1

0)

Pixels(784)

...
P

ix
el

s(
78

4)

C
la

ss
es

(1
0)

=

Samples

Samples

Matrix Multiply!

ArrayFire API

 array response = matmul(weights, train_feats);

Activation Function

● Sigmoid Function

// Activation function

array sigmoid(const array &val)

{

 return 1 / (1 + exp(-val));

}

Prediction

array prediction = sigmoid(matmul(weights, train_feats));

Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Update weights
● Repeat

Calculating Error

● Subtract the expected output with prediction
● Multiply with the learning rate

array err = train_targets - prediction;
weights += learning_rate * (matmulNT(err, train_feats));

Teaching a Perceptron

● Initialize weights to zero
● Generate response
● Update weights
● Repeat

Repeat

 for(int i = 0; i < 100; i++)

 {

 array prediction = sigmoid(matmul(weights, train_feats));

 array err = train_targets - prediction;

 float mean_abs_error = mean<float>(abs(err));

 printf("err: %0.4f\n", mean_abs_error);

 weights += learning_rate * (matmulNT(err, train_feats));

 }

Results

Measure Accuracy

float accuracy(const array& predicted, const array& target)

{

 array val, plabels, tlabels;

 max(val, tlabels, target, 0);

 max(val, plabels, predicted, 0);

 return 100 * count<float>(plabels == tlabels) / tlabels.elements();

}

82.03%

Perceptron

● Improvements
○ Smaller batches
○ Variable learning rate

● Linear Classifier!
○ Handwritten digit recognition cannot be solved by a linear classifier

● Additional layers are required

Neural Networks

● Made up of one or more layers of neurons
● Hidden layers updated using back propagation

Inputs Outputs

Back Propagation

● Hidden layers do not have an expected output
● Calculating error on output
● Send in data from the output layer back into network
● Gradient descent

Back Propagation
void ann::back_propagate(const vector<array> signal, const array &target, const double &alpha){

 // Get error for output layer

 array out = signal[num_layers - 1];

 array err = (out - target);

 int m = target.dims(0);

 for (int i = num_layers - 2; i >= 0; i--) {

 array in = add_bias(signal[i]);

 array delta = (deriv(out) * err).T();

 // Adjust weights

 array grad = -(alpha * matmul(delta, in)) / m;

 weights[i] += grad.T();

 // Input to current layer is output of previous

 out = signal[i];

 err = matmul(weights[i], delta).T();

 // Remove the error of bias and propagate backward

 err = err(span, seq(1, out.dims(1)));

 }

}

Results

● Accuracy: 93.90%
● Time: 31.30 seconds
● Epoch: 250

Back Propagation

● Effective
● Slow for deeper networks
● Requires labeled data

Deep Belief Nets

● A neural network made of multiple layers Restricted
Boltzmann Machines

● Deep belief networks are great with unlabeled data

RBM

RBM

ANN

Labels

Restricted Boltsmann Machine

● A neural network with one hidden
layer

● Each hidden neuron is connected to
every visible neuron

● The connection has a weight which
represents how strongly the neuron
reacts to that input

● A bias is associated with both
hidden and visible neurons

Visible

Hidden

Restricted Boltsmann Machine

Data Representation

H
id

de
n

La
ye

rs

Visible Layers

Visible

Hidden

RBM

Lets create our RBM

class rbm
{

array weights;
array h_bias;
array v_bias;

public:
rbm(visible_size, hidden_size)

: weights(constant(0, hidden_size, visible_size))
, h_bias(constant(0, 1, hidden_size))
, v_bias(constant(0, 1, visible_size))

{}
};

Visible

Training RBM

● Feed input into RBM
● Calculate the response
● Feed the response back through the network
● Calculate the error of the reconstruction
● Adjust the weights

Building the DBN

● Feed the output of the previous layer to the next
● Learns higher level features
● Use back propagation to fine tune the data

Results

● Accuracy: 93.46%
● Time: 13.27 seconds
● Epoch: 108

Improvements

● More data
● Larger network
● Learning rate
● Longer iterations

Questions

