

An Open Architecture, Server-Based Solution for Next Generation Electronic Warfare System

19 March 2015

Greg Gannett

Outline

- Electronic Warfare Overview
- IR&D Backstory
- **System Architecture**
- Network and GPU Performance

The EW Battlespace & RF Spectrum Challenge

Previous approaches of selective listening on known emitters are not adequate

EW System Architecture - Basic

EW System Architecture – Scaled

I&RD Project Objectives

Key Tenants Envisioned for Next Generation EW System Architectures

- Digitize the Spectrum and Distribute CDIF via a Flexible Digital Backbone
- Deliver new capability via mission and target-specific software applications hosted on a common hardware solution
- Replace custom, proprietary interfaces with open, standardized interfaces to facilitate rapid and affordable capability insertion

■ Server-Based Electronic Warfare Engineering Development Model

 Objective: To evaluate the ability of current & projected COTS technologies to realize Next Gen EW Architecture Vision

Server-Based Electronic Warfare Demonstrator

Advanced Development Model Overview

Architecture

Objectives

- √ Validate key COTS technologies: RF digitization, highspeed networks and high-speed computing environment
- ✓ Migrate pre-existing FPGA and PowerPC based receiver processing to Linux Servers and Intel & NVIDIA accelerators
- ✓ Demonstrate scalability of architecture to greater bandwidths (wideband feasibility)
- √ Validate Open Interface Data Distribution Services (DDS) publish / subscriber services
- ✓ Verify key TPMs: CDIF throughput, Processing Bandwidth, Measurement Accuracy, Dynamic Range

Enabling Technologies

COTS A/Ds **Digitizers**

- Easily scaled across general purpose HW hosts
- Flexibility in configurations
- Publish source I&Q data
- •Today: 12 bit @ 500 MHz
- Next Gen: 16 bit @ 500 MHz

PCle Gen 3.0

- Open standard with accelerated performance road map
- More configurable, higher bandwidth than VME
- Today: 7.88 GB/sec (8xGen 3)
- Next Gen: 15.7 GB/sec (8xGen 4) Today: 7GBps per channel

High Speed

- Widely used open standard provides most bandwidth solution
- User level multicast
- Near term (2015) projection of >100 Gbps
- Next Gen: 12.5 GBps per channel

General Purpose **GPUs**

- Excellent GFLOP/watt ratio
- Cost benefit over FPGA
- High-order SW language
- Vast CUDA libraries
- Today: Kepler GPUs with ~5 GFLOPS per watt
- Next Gen: Maxwell GPUs with ~12 GFLOPS per watt

Intel Xeon Multicore CPUs

- Excellent GFLOP/watt ratio
- Supports numerous High-order programming languages
- Most mainstream target processing environment
- Today: 2600 Xeons
- Next Gen: Xeons with Phi Accelerator

100% COTS Architecture Provides an Open, Scalable, Upgradable and Affordable Solution

EW Advanced Development Model – First Generation

Next Generation EW System – Tactically Relevant, Multi-Channel, Open Architecture EW Solution

High Speed Network– 56 Gbps per channel Infiniband Network

Digitization Layer- COTS A/D Solution Digitizes and Multicasts all CDIF Data to a Scalable Number of Processing Nodes

Processing Layer – COTS GPGPUs Perform Bulk of Real-Time Signal Processing with Multi-Core CPU's Completing the Balance

Server-Based Electronic Warfare ADM

Software Overview

Open Architecture and Modular, Software-Based Solution Facilitates Rapid Capability Insertion in Response to New and Evolving Threats

Channelized Receiver GPU Implementation & Timeline

Benchmarks – 3 Generations of GPGPUs

Tesla K-80 Single Precision Performance (Constant Data Stream)

Kernel	K40	K80 (per GPU)	
Samples	13330000	13330000	
Threads	1666250	1666250	
Ops	1.14638	1.14638	Gflops
Time	1.058	1.185	ms
Ops/s	1084	967	Gflops

700 GLOPS typically advertised for Single Precision cuFFT processing (FFT length of 4096)

cuFFT 6.0 on K40c, ECC ON, 32M elements, input and output data on device

Real-time Instrumentation

- Software monitors utilization of GPU resources
- Color-codes various stages of the Channelized Receiver processing over time

- Software monitors all network related resources and provides real-time feedback on current throughput
- Screen capture confirms Multicast Infiniband of high bandwidth Digitization Data

Signal Processing Displays

Both Core Signal Processing Software and Real-time Signal Processing displays hosted on GPU processors

Summary

Conclusions

- The Enabling Technologies are moving fast driven by wide commercial / non-defense markets
- We continue to be encouraged by results to date and anticipate continued performance gains due to ongoing COTS evolution

Next Steps

- The transition of this server-based architecture to a tactical system is underway
- Extend architecture to additional applications across the RF/EW enterprise
 - Through integration of mission and target-specific SW applications
 - Through continual integration of next generation COTS HW technologies

As the Technology Matures, More Systems will Adopt, Accelerating Development

1.0 - Complex Pulse Measurement - Background

Pulse Filtering and Channelizer Compensation Summary:

- To achieve wideband coverage, the RF spectrum is divided into channels and further sub-divided into sub-channels
- The division/sub-division of the RF spectrum creates conditions that have to be accounted for various signal types in order to accurately measure/characterize the RF environment

FFT Performance

cuFFT: up to 700 GFLOPS

1D Complex, Batched FFTs
Used in Audio Processing and as a Foundation for 2D and 3D FFTs

Performance may vary based on OS version and motherboard configuration

· cuFFT 6.0 on K40c, ECC ON, 32M elements, input and output data on device