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How Can We Build More Intelligent Computer 
Systems?

Need to perceive and understand the world

Basic speech and vision capabilities	


Language understanding	


User behavior prediction	



Ability to interact with environment	


…



How can we do this?

• Cannot write algorithms for each task we want to 
accomplish separately	



• Need to write general algorithms that learn from 
observations

Can we build systems that:	



• Generate understanding from raw data	



• Solve difficult problems to improve Google’s products	



• Minimize software engineering effort 	



• Advance state of the art in what is possible



Plenty of Data

• Text:  trillions of words of English + other languages	



• Visual: billions of images and videos	



• Audio: thousands of hours of speech per day	



• User activity: queries, result page clicks, map requests, etc.	



• Knowledge graph: billions of labelled relation triples	



• ...



Image Models



What are these numbers?



What are all these words?



How about these words?



Textual understanding

Understand difference between:	


!

I was given a card by her in the garden.	


or	



She gave me a card in the garden.	


!
vs.	


!
!

I gave her a card in the garden.	


or	



In the garden, I gave her a card.

Idea 1

Idea 2



Make solar energy economical	



Provide energy from fusion	



Develop carbon sequestration methods	



Manage the nitrogen cycle	



Provide access to clean water	



Restore/improve urban infrastructure 

Advance health informatics 

!
!

http://www.engineeringchallenges.org/cms/challenges.aspx	



National Academy of Engineering	


Grand Challenges for 21st Century

Engineer better medicines 

Reverse-engineer the brain 

Prevent nuclear terror	



Secure cyberspace 

Enhance virtual reality 

Advance personalized learning 

Engineer tools of scientific discovery 

http://www.engineeringchallenges.org/cms/challenges.aspx


What is Deep Learning?

of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of!200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same

classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise

Figure 2. Neuronal populations along the ventral visual processing stream. The rhesus monkey is currently our best model of the human visual system. Like humans,
monkeys have high visual acuity, rely heavily on vision (!50% of macaque neocortex is devoted to vision) and easily perform visual recognition tasks. Moreover, the
monkey visual areas have been mapped and are hierarchically organized [26], and the ventral visual stream is known to be critical for complex object discrimination
(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (adapted from Ref. [26]). We conceptualize each stage of the ventral stream as a new
population representation. The lower panels schematically illustrate these populations in early visual areas and at successively higher stages along the ventral visual stream
– their relative size loosely reflects their relative output dimensionality (approximate number of feed-forward projection neurons). A given pattern of photons from the world
(here, a face) is transduced into neuronal activity at the retina and is progressively and rapidly transformed and re-represented in each population, perhaps by a common
transformation (T). Solid arrows indicate the direction of visual information flow based on neuronal latency (!100 ms latency in IT), but this does not preclude fast feedback
both within and between areas (dashed arrows, see Box 1). The gray arrows across the bottom indicate the population representations for the retina, V1 and IT, which are
considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, lateral geniculate nucleus.
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A working hypothesis:

The ventral stream “untangles” objects

“cat”

•  The modern reincarnation of Artificial Neural Networks from 
the 1980s and 90s.	


•  A collection of simple trainable mathematical units, which 
collaborate to compute a complicated function.	


•  Compatible with supervised, unsupervised, and reinforcement 
learning.



What is Deep Learning?
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A working hypothesis:

The ventral stream “untangles” objects

“cat”

•  Loosely inspired by what (little) we know about  
    the biological brain.	


•  Higher layers form higher levels of abstraction



Neural Networks

• Learn a complicated function from data

space 
1

space 
2



The Neuron

yi = F

 
X

i

wixi

!

x1 x2 x3

w1 w2 w3

F (x) = max(0, x)

• Different weights compute different 
functions



Neural Networks
• Simple compositions of neurons• Different weights compute different 

functions



Neural Networks
• Simple compositions of neurons

Input:

Output:



Neural Networks
• Simple compositions of neurons

Input:

Output:



Neural Networks

Input:

Output:



Neural Networks

Input:

Output:



Learning Algorithm

• while not done	



• pick a random training case (x, y) 	



• run neural network on input x 

• modify connections to make prediction 
closer to y 



Learning Algorithm

• while not done	



• pick a random training case (x, y) 	



• run neural network on input x 

• modify connection weights to make 
prediction closer to y 



How to modify 
connections?

• Follow the gradient of the error w.r.t. the 
connections

Gradient points in direction of improvement



One Simple Scalability Aid

• Previous algorithm was a bit of a lie.  We don’t do one (x,y) 
example at a time.	



• Rather, we do “mini-batches” of, say, 32 to 1024 different 
(x,y) pairs at a time, and average the gradient for all of these 
examples	



• Turns matrix-vector operations into matrix-matrix 
operations	



• Nicely suited for GPUs



What can neural nets 
compute?

• Human perception is very fast (0.1 second)	



• Recognize objects  (“see”)	



• Recognize speech   (“hear”)	



• Recognize emotion	



• Instantly see how to solve some problems	



• And many more!



Why do neural 
networks work?
Why do neural 
networks work?

see	


image

catclick	


if cat	



0.1 sec: 
neurons 
can fire 
only 10 
times!	





Why do neural 
networks work?

• Anything humans can do in 0.1 sec, the 
right big 10-layer network can do too



Important Properties of Deep Neural Networks
• Automatic: features developed as part of learning process	



•very good at learning from raw data (pixels, audio waveforms, etc.)	


• Hierarchical: complex features built from simple features	


Together: Amazing pattern recognition ability



Input Output

Pixels: “lion”

Audio: “see at tuhl   res taur aun ts”

<query, doc> P(click on doc)

“Hello, how are you?” “Bonjour, comment allez-vous?”

Pixels: “A close up of a small child holding a 
stuffed animal”

Functions Artificial Neural Nets 
Can Learn



Research Objective: Make It Simple!

• Internal software framework usable by anyone at Google	



• Enable both research as well as training/use of models for products	



• Many dozens of production launches of neural nets for real problems	



• Allows neural architectures and training procedures to be 
easily described	



• Handles fault tolerance, recovery, parallelization, etc. with just 
a few simple hints from the user

Dean, et al. , Large Scale Distributed Deep Networks, NIPS, 2012. 



Research Objective: Make It Simple!

m = Model(num_partitions=4) 

input = m.ImageInput(“/dir/myimages”, rows=256, cols=256) 

hidden = m.NeuralRELULayer(input, 2000) 

sm = m.Softmax(hidden, num_classes=10, labels=input.labels)

Dean, et al. , Large Scale Distributed Deep Networks, NIPS, 2012. 



Time for Training & Its Effect on Research

Minutes, Hours:	



• Interactive research! Instant gratification!	



• Parameter exploration.	



1-4 Days:	



• Tolerable.	



• Interactivity replaced by parallelization of experiments.	



1-4 Weeks:	



• High value experiments only.	



• Progress stalls.	



> 1 Month:	



• Don’t even try.	





Train in a day what takes a single GPU card 6 weeks



How Can We Train Big Nets Quickly?

• Exploit many kinds of parallelism	



!

• Model parallelism	



• Data parallelism	



• (Plus running many simultaneous experiments on top of 
these approaches)



Input data

Layer 1

Layer N

Representation

...



Input data

Layer 1

Layer N

Representation

(Sometimes)	


Local Receptive 

Fields
...



Layer 1

Layer 0

Layer N

Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

...

Model Parallelism: Partition model across GPUs 
and/or across machines



Layer 1

Layer 0

Layer N

Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

Minimal network traffic:	


The most densely connected	



areas are on the same partition

Regularly use models that are spread across dozens of machines

...

Model Parallelism: Partition model across GPUs 
and/or across machines



p

Model	



Data	



∆p p’

p’ = p + ∆p

Data Parallelism: 
Asynchronous Distributed Stochastic Gradient Descent

Parameter Server

∆p’

p’’ = p’ + ∆p’



Parameter Server

Model	


Workers

Data	


Shards

p’ = p + ∆p

∆p p’

Data Parallelism: 
Asynchronous Distributed Stochastic Gradient Descent

Regularly use hundreds of model replicas	


(each of which might be dozens of machines)



Other Scalability Aids

• Can even use 16-bit arithmetic.  From Arxiv paper Deep Learning 
with Limited Numerical Precision, Gupta et al.  (IBM):

16-bit values, stochastic rounding

• Neural nets very tolerant of reduced precision arithmetic	



• e.g. chop 32-bit floats to 16 bits for network transfers



Other Scalability Aids
• ReLU activation functions produce “true zero values”	



• these are quite compressible	



!

• “Concurrent steps”: pipelining overlaps computation and 
communication



Other Scalability Aids

• Use model connectivity structures that are adapted to the 
underlying communication channel capacities

vs.



• Google has invested decades of person-years of systems 
engineers and artificial intelligence researchers in building the 
state-of-the-art infrastructure.	



• We often leverage thousands of CPUs and GPUs to learn from 
billions of data samples in parallel.  
       Dean et al., Large Scale Distributed Deep Networks. NIPS 2012	



• We publish frequently, and often place first in academic 
challenges in image recognition, speech recognition, etc.  
       Szegedy et al., GoogLeNet: Going Deeper with Convolutions. ILSVRC 2014	



• Extensive and accelerating experience in using deep learning 
in real products:  47 production launches in the last 2 years.  
       e.g.  Photo search, Android speech recognition, StreetView, Ads placement...

Deep Learning @ Google



• Distributed training of large neural nets (Dean et al., NIPS 2012)	



• Object recognition in images (Erhan et al., 2014)	



• Object category discovery in video (Le et al., ICML 2012)	



• Speech recognition (Vanhoucke et al., NIPS Workshop 2011)	



• Annotating images with text (Vinyals et al., arXiv 2014)	



• OCR: reading text from images (Goodfellow et al., ICLR 2014)	



• Natural language understanding (Mikolov et al., NIPS 2013)	



• Machine translation (Sutskever et al., NIPS 2014) 	



• Online advertising (Corrado et al., ICML Workship 2012)

Some areas we’ve published in:

Widely Applicable



Applications



Newborn Baby+YouTube = ???

• Unsupervised training	



• Pick one frame from each of 10 million 
YouTube videos & train model	



• No labels!

• ~50x larger than largest deep network in 
the literature at the time	



• 60,000 neurons at top level	



• Trained on 16,000 CPU cores for 1 week

autoencoder

autoencoder

autoencoder

•Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng.  Building High-Level Features Using Large Scale 
Unsupervised Learning, ICML 2012. 



Newborn Baby+YouTube = ???

Top level neurons seem to discover 
high-level concepts.  For example, one 
neuron is a decent face detector:

Feature value

Fr
eq

ue
nc

y

Non-faces

Faces

•Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng.  Building High-Level Features Using Large Scale 
Unsupervised Learning, ICML 2012. 



Purely Unsupervised Feature Learning in Images
Most face-selective neuron

Top 48 stimuli from the test set Optimal stimulus 	


by numerical optimization



Purely Unsupervised Feature Learning in Images
It is YouTube...  We also have a cat neuron!

Optimal stimulus Top stimuli from the test set





Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English	


(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android

Close collaboration with Google Speech team

label



Convolutional Models for Image Classification

LeCun et al., 1989

Krizhevsky et al., NIPS 2012!
2012 ImageNet winner: 16.4% top-5 error rate GoogLeNet!

2014 ImageNet winner:	


 6.66% top-5 error rate



Improvement Happening Rapidly

Top 5 error

Imagenet 2011 winner (not CNN) 25.7%

Imagenet 2012 winner 16.4% (Krizhesvky et al.)

Imagenet 2013 winner 11.7% (Zeiler/Clarifai)

Imagenet 2014 winner 6.7% (GoogLeNet)

Human: Andrej Karpathy 5.1%

Baidu Arxiv paper: 3 Jan ‘15 6.0%

MS Research Arxiv paper: 6 Feb ‘15 4.9%

Google Arxiv paper: 2 Mar ‘15 4.8%



Good Fine-grained Classification

“hibiscus” “dahlia”



Good Generalization

Both recognized as a 
“meal”



Sensible Errors

“snake” “dog”



Works in practice
 for real users.



Works in practice
 for real users.



Text?	



Work by Matt Zeiler (summer intern), Julian Ibarz and Jeff Dean







What about domains with sparse input data?

Deep neural networks have proven	


themselves across a range of supervised learning 

tasks involve dense input features.



~1000-D joint embedding space

dolphin

SeaWorld

Paris

Answer: Embeddings

porpoise

Camera

How can DNNs possibly deal with sparse data?



EEmbedding function

Deep neural network

Raw sparse inputs

Floating-point vectors

Prediction	


(classification or regression)

How Can We Learn the Embeddings?

features



ESingle embedding function

Hierarchical softmax	


classifier

Raw sparse features Obama

How Can We Learn the Embeddings?

nearby word

Skipgram Text Model

meeting with Putin

Mikolov, Chen, Corrado and Dean.  Efficient Estimation of Word 
Representations in Vector Space,  http://arxiv.org/abs/1301.3781.

is

http://arxiv.org/abs/1301.3781


source word

nearby words

  embedding!
    vector

upper layers

Nearest neighbors in language embeddings 
space are closely related semantically.

tiger_shark!
!
bull_shark!
blacktip_shark!
shark!
oceanic_whitetip_shark!
sandbar_shark!
dusky_shark!
blue_shark!
requiem_shark!
great_white_shark!
lemon_shark

car!
!
cars!
muscle_car!
sports_car!
compact_car!
autocar!
automobile!
pickup_truck!
racing_car!
passenger_car !
dealership

new_york!
!
new_york_city!
brooklyn!
long_island!
syracuse!
manhattan!
washington!
bronx!
yonkers!
poughkeepsie!
new_york_state

•  Trained skip-gram model on Wikipedia corpus.

E

   * 5.7M docs, 5.4B terms, 155K unique terms, 500-D embeddings



Solving Analogies

• Embedding vectors trained for the language modeling task have 
very interesting properties (especially the skip-gram model).

!

E(hotter) - E(hot) ≈ E(bigger) - E(big)	


!

E(Rome) - E(Italy) ≈ E(Berlin) - E(Germany)	





!

E(hotter) - E(hot) + E(big) ≈ E(bigger)	


!

E(Rome) - E(Italy) + E(Germany) ≈ E(Berlin)	



Solving Analogies

• Embedding vectors trained for the language modeling task have 
very interesting properties (especially the skip-gram model).

Skip-gram model w/ 640 dimensions trained on 6B words of news text 
achieves 57% accuracy for analogy-solving test set.



Visualizing the Embedding Space
Projected down from 640 dimensions to 2 dimensions via Principal Components Analysis (PCA)



Embeddings are Powerful

fallen

draw

fell

drawn

drew take
taken

took

give
given

gave

fall

Projected down from 640 dimensions to 2 dimensions via Principal Components Analysis (PCA)



Sequence Prediction
Given a sequence of events so far, guess what will follow.

Observed past events Predicted future events

Seems simple.  But a surprisingly broad problem framing.

Ilya Sutskever, Oriol Vinyals, Quoc Le.	


Sequence to Sequence Learning with Neural Networks. NIPS, 2014.



Sequence Prediction Model
Recurrent neural network (LSTM)

input1 input2

time

output1 output2 output3 outputN

…

input3 inputN

Ilya Sutskever, Oriol Vinyals, Quoc Le.	


Sequence to Sequence Learning with Neural Networks. NIPS, 2014.

deep 
LSTM: 

multiple 
layers per 
time step



Translation with Sequence Prediction

Hello Bonjourhow are you? <end> comment allez-vous?

Approach gives state-of-the-art results on public WMT translation task/
dataset

Ilya Sutskever, Oriol Vinyals, Quoc Le.	


Sequence to Sequence Learning with Neural Networks. NIPS, 2014.



Conversation with Sequence Prediction 

... you last successfully 
connect to VPN?

Given a conversation with computer tech support so far, model can 
complete the tech support rep’s sentence.

Customer: Hi.	


TechSupport: Hi, this is Andrew from 
       Techstop Connect, how can I help?	


Customer: I cannot connect to VPN.	


TechSupport: When did...

Predictions reflect situational context.

Ilya Sutskever, Oriol Vinyals, Quoc Le.	


Sequence to Sequence Learning with Neural Networks. NIPS, 2014.



Example of LSTM-based representation:	


Machine Translation

Input: “Cogito 
ergo sum”

Output: “I think, 
therefore I am!”

Big vector



sentence rep

PCA

LSTM for End to End Translation 

linearly separable	


wrt subject vs object



sentence rep

PCA
mostly invariant to paraphasing

LSTM for End to End Translation 



Combining modalities	


e.g. vision and language



Initial state can also come from non-sequence data.	


Given a photograph, generate a caption.

This example highlights that these models:	


(1)  Can handle very complex inputs, and inputs other than text.	


(2)  Works even in settings with multiple plausible future sequences. 

Captions with Sequence Prediction

“A close up of a child 
holding a stuffed animal.”

“A baby is asleep next to 
a teddy bear.”

Two captions Brain suggests:

New York Times article:  http://nyti.ms/11eGpAW Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan.	


Show and Tell: A Neural Image Caption Generator.  arXiv, 2014.

http://nyti.ms/11eGpAW


Given a photograph, we can automatically generate a text caption.

A man flying through the air  
while riding a snowboard

A group of young people 
playing a game of Frisbee

A man holding a tennis racquet	


on a tennis court.

Two pizzas sitting on top	


of a stove top oven

Captions with Sequence Prediction



Learning to Play Atari
• Work done in Google’s DeepMind research group in London	



• Cover article in Nature a couple of weeks ago

• Instead of just classifying, learn to 
take actions in some environment, 
and learn from observing the 
results of those actions



Deep Networks and Reinforcement Learning

Learn automatically from raw inputs, not pre-programmed

Atari 2600 games used as proving ground:

– Agents just get raw pixels+score as inputs (~30k inputs)	



– Wired up to action buttons but NOT told what they do	



– Goal is simply to maximize the score

Everything learnt from scratch, ZERO prior knowledge	



Single system has to master 100s of different games



Space Invaders



Breakout



General Atari Player



Conclusions
• Deep neural networks are very effective for wide range of 

tasks	



• By using several kinds of parallelism, we can quickly train very large 
and effective deep neural models on very large datasets	



• Automatically build high-level representations to solve desired tasks	



• By using embeddings, can work with sparse data	



• Reinforcement learning can be used to teach agents to perform 
complex tasks that are learned from scratch	



• Effective in many domains: speech, vision, language modeling, user 
prediction, language understanding, translation, advertising, …

An important tool in building 
intelligent systems.



Questions?

Joint work with many collaborators!  Further reading:	


• Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng.  Building High-Level Features Using Large Scale 
Unsupervised Learning, ICML 2012. 	



• Dean, et al. , Large Scale Distributed Deep Networks, NIPS, 2012. 	



• Mikolov, Sutskever, Chen, Corrado and Dean.  Distributed Representations of Words and Phrases and their 
Compositionality,  http://arxiv.org/abs/1310.4546.  NIPS, 2013.	



• Zeiler, Ranzato, Monga, Mao, Yang, Le, Nguyen, Senior, Vanhoucke, Dean, Hinton.  On Rectified Units for 
Speech Processing.  ICASSP 2013.	



• Heigold, Vanhoucke, Senior, Nguyen, Ranzato, Devin and Dean.  Multilingual Acoustic Models using 
Distributed Deep Neural Networks, ICASSP 2013.	



• Sutskever, Vinyals, and Le.  Sequence to Sequence Learning with Neural Networks, http://arxiv.org/abs/
1409.3215.  NIPS, 2014.	



• Vinyals, Toshev, Bengio, and Erhan. Show and Tell: A Neural Image Caption Generator.  http://arxiv.org/abs/
1411.4555	



 We’re having lots of fun and we’re hiring! 

g.co/ml-jobs

http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1411.4555
http://g.co/ml-jobs

