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Joint work with many colleagues at Google



How Can We Build More Intelligent Computer
Systems!

Need to perceive and understand the world

Basic speech and vision capabilities
Language understanding
User behavior prediction

Ability to interact with environment




How can we do this?

Cannot write algorithms for each task we want to
accomplish separately

Need to write general algorithms that learn from
observations

Can we build systems that:

Generate understanding from raw data
Solve difficult problems to improve Google’s products
Minimize software engineering effort

Advance state of the art in what is possible




Plenty of Data

Text: trillions of words of English + other languages
Visual: billions of images and videos

Audio: thousands of hours of speech per day

User activity: queries, result page clicks, map requests, etc.

Knowledge graph: billions of labelled relation triples
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Image Models

dishwasher [ 0.91, web ] car show [0.99, web ]

stone wall [ 0.95, web ]
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judo [ 0.96, web

tractor [ 0.94, web |



What are these numbers?




What are all these words?




How about these words!?

. _
L?’Z@«dfm

| Sfoalewdlas) Zé...a/ S

' MZ - ma;w-’;, S Ao

' *"ﬂaé z »»7/%;.
coiicekh Lo 76,4 //‘44.., /0

Ls ?n-t-./%d ‘407

txzé «%,w/a(////
W Az ke ao v 2o /)33
V-m&éf 74’ %{
o —

: Qo :’Z/’é:édwf/ é'a?-»w
: % M -~ ? ﬁ/ﬁtz/

JunywsgndiadSaananum
MUTIMENENIA T
achudmuTInIng
QNI WURITIIAI
Tudaluulniousdndadan
FAINIWNIUNUWIITRITY

URURAYT: wr]ﬂngmmufﬂo
wan s 4 91 9 udeue




Textual understanding

Understand difference between:

I was given a card by her in the garden.

|dea | or
She gave me a card in the garden.

VS.

I gave her a card in the garden.

|dea 2 or
In the garden, I gave her a card.




National Academy of Engineering
Grand Challenges for 21st Century

Make solar energy economical Engineer better medicines
Provide energy from fusion Reverse-engineer the brain
Develop carbon sequestration methods  Prevent nuclear terror
Manage the nitrogen cycle Secure cyberspace

Provide access to clean water Enhance virtual reality

Restore/improve urban infrastructure Advance personalized learning

Advance health informatics Engineer tools of scientific discovery

http://www.engineeringchallenges.org/cms/challenges.aspx

Google


http://www.engineeringchallenges.org/cms/challenges.aspx

What is Deep Learning!?

* The modern reincarnation of Artificial Neural Networks from
the 1980s and 90s.

* A collection of simple trainable mathematical units, which
collaborate to compute a complicated function.

 Compatible with supervised, unsupervised, and reinforcement
learning.




What is Deep Learning!?

® | oosely inspired by what (little) we know about

the biological brain.
* Higher layers form higher levels of abstraction

10 mm




Neural Networks

® | earn a complicated function from data

dm2iel~ dmiz2 e~




The Neuron

® Different weights compute different

functions /

Y, = F (Z wzxz) F(z) = max(0, )




Neural Networks

® Different weights compute different
functions
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Learning Algorithm

® while not done
® pick a random training case (X, y)
® run neural network on input X

® modify connections to make prediction
closer toy



Learning Algorithm

® while not done
® pick a random training case (X, y)
® run neural network on input X

® modify connection weights to make
prediction closer to y




How to modify
connections’

® Follow the gradient of the error w.r.t. the
connections

Gradient points in direction of improvement



One Simple Scalability Aid

® Previous algorithm was a bit of a lie. We don’t do one (x,y)
example at a time.

® Rather, we do “mini-batches” of, say, 32 to 1024 different
(x,y) pairs at a time, and average the gradient for all of these

examples

® Turns matrix-vector operations into matrix-matrix
operations

® Nicely suited for GPUs



VWVhat can neural nets
compute!

® Human perception is very fast (0.1 second)
® Recognize objects (“see” \(y
® Recognize speech (“hear”) ’\
® Recognize emotion
® |nstantly see how to solve some problems

® And many more!



VVhy do neural
networks work!?
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0.1 sec:
neurons
can fire
only |10
times!
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VWhy do neural
networks work?

® Anything humans can do in 0.1 sec, the
right big 10-layer network can do too




Important Properties of Deep Neural Networks

e Automatic: features developed as part of learning process
every good at learning from raw data (pixels, audio waveforms, etc.)

e Hierarchical: complex features built from simple features
Together: Amazing pattern recognition ability

object models

SUBRUAL oo
REBEI=V
Vemh @M@y of edges)

Training set: Aligned

images of faces. AN T
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Functions Artificial Neural Nets é.%

Can Learn
Output
Pixels “lion”
Audio : ‘see at tuhl res taur aun ts”
<qury, doc> P(click on doc)
“Hello, how are you”?” “‘Bonjour, comment allez-vous”?”
ST “A close up of a smalll Chi’|’d holding a
stuffed animal




Research Objective: Make It Simple!

® |nternal software framework usable by anyone at Google
® Enable both research as well as training/use of models for products

® Many dozens of production launches of neural nets for real problems

® Allows neural architectures and training procedures to be
easily described

® Handles fault tolerance, recovery, parallelization, etc. with just
a few simple hints from the user

Dean, et al., Large Scale Distributed Deep Networks, NIPS, 2012.



Research Objective: Make It Simple!

m = Model (num partitions=4)

input = m.ImagelInput (“/dir/myimages”, rows=256, cols=256)
hidden = m.NeuralRELULayer (i1nput, 2000)

sm = m.Softmax (hidden, num classes=10, labels=input.labels)

e

Dean, et al., Large Scale Distributed Deep Networks, NIPS, 2012.



Time for Training & Its Effect on Research

Minutes, Hours:
® |nteractive research! Instant gratification!
® Parameter exploration.
|-4 Days:
® TJolerable.
® |nteractivity replaced by parallelization of experiments.
| -4 Weeks:
® High value experiments only.
® Progress stalls.
> | Month:

® Don’t even try.




Train in a day what takes a single GPU card 6 weeks




How Can We Train Big Nets Quickly?

Exploit many kinds of parallelism

Model parallelism
Data parallelism

(Plus running many simultaneous experiments on top of
these approaches)
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Model Parallelism: Partition model across GPUs

and/or across machines
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Model Parallelism: Partition model across GPUs
and/or across machines

o
o
o
o
o
o
o
o
R4 Y.,
Partition ||Partition 2] Partition 3 Layer N
A 4 A A

Minimal network traffic:
The most densely connected
areas are on the same partition

Regularly use models that are spread across dozens of machines



Data Parallelism:
Asynchronous Distributed Stochastic Gradient Descent

Parameter Server ' =p +Ap’
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Data Parallelism:
Asynchronous Distributed Stochastic Gradient Descent

Parameter Server P =p +Ap

000000
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Data
Shards

Regularly use hundreds of model replicas
(each of which might be dozens of machines)



Other Scalability Aids

® Neural nets very tolerant of reduced precision arithmetic

® e.g.chop 32-bit floats to 16 bits for network transfers

® C(Can even use |6-bit arithmetic. From Arxiv paper Deep Learning
with Limited Numerical Precision, Gupta et al. (IBM):

| 6-bit values, stochastic rounding

4 | I | I |

FL 14
FL 10
FL 8
Float

¢ 9

Test error(%)

@O0 5 10 15 20 25 30

Training epoch



Other Scalability Aids

® RelU activation functions produce “true zero values”

® these are quite compressible

® “Concurrent steps’: pipelining overlaps computation and
communication




Other Scalability Aids

® Use model connectivity structures that are adapted to the
underlying communication channel capacities
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Deep Learning @ Google

Google has invested decades of person-years of systems
engineers and artificial intelligence researchers in building the
state-of-the-art infrastructure.

We often leverage thousands of CPUs and GPUs to learn from

billions of data samples in parallel.
Dean et al., Large Scale Distributed Deep Networks. NIPS 2012

We publish frequently, and often place first in academic

challenges in image recognition, speech recognition, etc.
Szegedy et al., GoogleNet: Going Deeper with Convolutions. ILSVRC 2014

Extensive and accelerating experience in using deep learning

in real products: 47 production launches in the last 2 years.
e.g. Photo search,Android speech recognition, StreetView, Ads placement...



Widely Applicable

Some areas we've published in:

Distributed training of large neural nets (Dean et ai, NIPs 2012)
Object recognition in images (Erhan et al,2014)

Object category discovery in video (Le et o, ICML 2012)
Speech recognition (vanhoucke et al, NIPS Workshop 201 1)
Annotating images with text (vinyals et al, arXiv 2014)

OCR: reading text from images (Goodfellow et al, ICLR 2014)
Natural language understanding (Mikolov et al, NIPS 2013)
Machine translation (sutskever et al, NIPS 2014)

Online advertising (Corrado et al, ICML Workship 2012)

Google
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Newborn Baby+YouTube = 22?

autoencoder
* Unsupervised training

. ,‘ * Pick one frame from each of 10 million
/ YouTube videos & train model

* No labels!

\ * ~50x larger than largest deep network in
" the literature at the time

a

* 60,000 neurons at top level

_® Trained on 16,000 CPU cores for | week

*Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng. Building High-Level Features Using Large Scale
Unsupervised Learning, ICML 2012.



Newborn Baby+YouTube = 22?

Ei i:l """"""" Top level neurons seem to discover
’ 3 high-level concepts. For example, one
' neuron is a decent face detector:

Faces

Non-faces
--Illl‘l .||||||| ||‘||IIIII.||||||I|II._
Feature value

*Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng. Building High-Level Features Using Large Scale
Unsupervised Learning, ICML 2012.

Frequency




Purely Unsupervised Feature Learning in Images

Most face-selective neuron

Optimal stimulus
by numerical optimization

Top 48 stimuli from the test set




Purely Unsupervised Feature Learning in Images

It is YouTube... We also have a cat neuron!

Top stimuli from the test set Optimal stimulus
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Acoustic Modeling for Speech Recognition
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Close collaboration W|th Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English
(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android



Convolutional Models for Image Classification

C3: 1. maps 16@10x10 =

INPUT gé ;gaéusfe maps S4: 1. maps 16@5x5 [~
32x32 gé f. maps CS: layer 5: layer ouTPUT :
EAEAEA D
B B B
]
EpEaEAE -
ERREE =
| Full connection Gamllssian connections : :
Convolutions Subsampling Convolutions  Subsampling Full connection A B EA B B
= EA B e
o
EA EA B B
LeCun et al., 1989 e
el —
EAEAEAEA
EREE o
A £
‘ls ‘aq‘ | 27 128 ]_' - — 22 — - . Al :ﬁ::
k AN, 13 13
SRR | s s
3 [‘ = j‘_; - p3 ;‘ . e 10 hs dense | |dense 'y : g:
| o Y - 192 192 128 Max - l 3 ﬂjm;ﬂ
Strid Max 128 Max pooling 2% 2048 2 EA R
Jof 4 pooling pooling
3 a8 e
==
=
Krizhevsky et al., NIPS 2012 =
. ==
2012 ImageNet winner: 16.4% top-5 error rate = GoogLeNet
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6.66% top-5 error rate



Improvement Happening Rapidly

Imagenet 2011 winner (not CNN) 25.7%
Imagenet 2012 winner 16.4% (Krizhesvky et al.)
Imagenet 2013 winner 11.7% (Zeiler/Clarifai)
Imagenet 2014 winner 6.7% (GooglLeNet)

Human: Andrej Karpathy 5.1%
Baidu Arxiv paper: 3 Jan ‘15 6.0%
MS Research Arxiv paper: 6 Feb ‘15 4.9%

Google Arxiv paper: 2 Mar ‘15 4.8%



Good Fine-grained Classification

“hibiscus’




Good Generalization

Both recognized as a
‘(meal”

Google



Sensible Errors

9

Google



Works in practice

for real users.

Wow.

The new Google plus photo search is a bit insane.

| didn’t tag those... )




Works in practice

for real users.

Google Plus photo search is awesome. Searched with keyword
‘Drawing’ to find all my scribbles at once :D




Work by Matt Zeiler (summer intern), Julian Ibarz and Jeff Dean
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Deep neural networks have proven
themselves across a range of supervised learning
tasks involve dense input features.

What about domains with sparse input data?

Google



How can DNNs possibly deal with sparse data?
Answer: Embeddings

~1000-D joint embedding space

——

@) A

@A
Camera | =
7{ \ SealWorld

por F?oi,sei dmt?km




How Can We Learn the Embeddings?

Prediction o)
(classification or regression) T
(O0O0000000000)

Deep neural network

(OCO0000000000)

!

Floating-point vectors [TT1TT]

T

Embedding function E

Raw sparse inputs features

Google



How Can We Learn the Embeddings?
Skipgram Text Model

Hierarchical softmax (©oocoococoo0eo000) nearby word
classifier :
A
[TIIT1T]
Single embedding function E
Raw sparse features Obama | is meeting with [Putin

Mikolov, Chen, Corrado and Dean. Efficient Estimation of Word
Go Sle Representations in Vector Space, http://arxiv.org/abs/1301.3781.



http://arxiv.org/abs/1301.3781

Nearest neighbors in language embeddings

space are closely related semantically.

* Trained skip-gram model on Wikipedia corpus.

tiger_shark car new_york
bull_shark cars new_york_city
blacktip_shark muscle_car brooklyn
shark sports_car long_island
oceanic_whitetip_shark  compact_car syracuse
sandbar_shark autocar manhattan
dusky_shark automobile washington
blue_shark pickup_truck bronx
requiem_shark racing_car yonkers
great_white_shark passenger_car poughkeepsie
lemon_shark dealership new_york_state

nearby words
]

upper layers j

embedding
vector | E

source word

GO ,Slg *5.7M docs, 5.4B terms, 155K unique terms, 500-D embeddings



Solving Analogies

® Embedding vectors trained for the language modeling task have
very interesting properties (especially the skip-gram model).

E(hotter) - E(hot) = E(bigger) - E(big)

E(Rome) - E(ltaly) = E(Berlin) - E(Germany)




Solving Analogies

® Embedding vectors trained for the language modeling task have
very interesting properties (especially the skip-gram model).

E(hotter) - E(hot) + E(big) = E(bigger)

E(Rome) - E(ltaly) + E(Germany) = E(Berlin)

Skip-gram model w/ 640 dimensions trained on 6B words of news text
achieves 57% accuracy for analogy-solving test set.



Visualizing the Embedding Space

Projected down from 640 dimensions to 2 dimensions via Principal Components Analysis (PCA)
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Embeddings are Powerful

Projected down from 640 dimensions to 2 dimensions via Principal Components Analysis (PCA)

fallen
\\@ll
drawgraw given
| i~ ~~give
fell
[ taken
drew ake
gave
took

Google



Sequence Prediction

Given a sequence of events so far, guess what will follow.

Observed past events Predicted future events

Seems simple. But a surprisingly broad problem framing.

llya Sutskever, Oriol Vinyals, Quoc Le. GO gle

Sequence to Sequence Learning with Neural Networks. NIPS, 2014.



Sequence Prediction Model

Recurrent neural network (LSTM)

bt 4
I S S f ey
> —> —> —> —> LSTM:
t — t - t - - t > multiple
"t layers per
1 - 1 —> 1 —> —> 1 —> time step
I - -
Ff 1 t
input | input?2 input3 inputN
time >
22:5:2?:(: %i::#:ienﬁ:;r?nugo\fvitﬁNeural Networks. NIPS, 2014. GO 816



Translation with Sequence Prediction

Hello how are you? <end> Bonjour comment allez-vous?

Approach gives state-of-the-art results on public WMT translation task/
dataset

llya Sutskever, Oriol Vinyals, Quoc Le. GO 8[€

Sequence to Sequence Learning with Neural Networks. NIPS, 2014.



Conversation with Sequence Prediction

Given a conversation with computer tech support so far, model can
complete the tech support rep’s sentence.

Customer: Hi.

TechSupport: Hi, this is Andrew from
Techstop Connect, how can I help?

Customer: I cannot connect to VPN.

TechSupport: When did...

... you last successftully

connect to VPN?
Predictions reflect situational context.
llya Sutskever, Oriol Vinyals, Quoc Le.
Sequence to Sequence Learning with Neural Networks. NIPS,2014. GO gle



Example of LSTM-based representation:
Machine Translation

Input: “Cogito
ergo sum’

Big vector

Output: | think,

therefore | am!”’

Google



LSTM for End to End Translation

SIS ey linearly separable
PCA wrt subject vs object
ol
3t OMary admires John
21 OMary is in love with John
l
or OMary respects John

| OJohn admires Mary

-2+ OdJohn is in love with Mary

-5t OJohn respects Mary

ce



LSTM for End to End Translation

sentence rep

PCA

mostly invariant to paraphasing

1 -
> O | was given a card by her in the garden
10+ O In the garden , she gave me a card
O She gave me a card in the garden
5 -
0 L
=S O She was given a card by me in the garden
O In the garden, | gave her a card
_10 -
15T O | gave her a card in the garden
_20 1 1 1 1 1 1 J
-15 -10 -5 0 5 10 15 20

Google
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e
Combining modalities
e.g. vision and language

Google



Captions with Sequence Prediction

Initial state can also come from non-sequence data.

Given a photograph, generate a caption.

Two captions Brain suggests:

“A close up of a child
- holding a stuffed animal.”
et g
“A baby is asleep next to
a teddy bear.”

This example highlights that these models:
(1) Can handle very complex inputs, and inputs other than text.
(2) Works even 1n settings with multiple plausible future sequences.

New York Times article: http:/nyti.ms/11eGpAW Oriol Vinyals, Alexander Toshey, Samy Bengio, Dumitru Erhan.
Show and Tell: A Neural Image Caption Generator. arXiy, 2014.


http://nyti.ms/11eGpAW

Captions with Sequence Prediction

Given a photograph, we can automatically generate a text caption.

o
m‘;h‘lﬁx "Llfn - A“
A man holding a tennis racquet Two pizzas sitting on top

on a tennis court. of a stove top oven

A group of young people A man flying through the air
playing a game of Frisbee while riding a snowboard



Learning to Play Atari

* Work done in Google’s DeepMind research group in London

* Cover article in Nature a couple of weeks ago

® |nstead of just classifying, learn to
take actions in some environment,
and learn from observing the
results of those actions

Agent Environment




Deep Networks and Reinforcement Learning

Learn automatically from raw inputs, not pre-programmed

Atari 2600 games used as proving ground:

— Agents just get raw pixels+score as inputs (~30k inputs)

—Wired up to action buttons but NOT told what they do

— Goal is simply to maximize the score

Everything learnt from scratch, ZERO prior knowledge

Single system has to master 100s of different games

R o i o
o o i e
R



Space Invaders




Breakout




General Atari Player




Conclusions
® Deep neural networks are very effective for wide range of
tasks

® By using several kinds of parallelism, we can quickly train very large
and effective deep neural models on very large datasets

® Automatically build high-level representations to solve desired tasks
® By using embeddings, can work with sparse data

® Reinforcement learning can be used to teach agents to perform
complex tasks that are learned from scratch

® Effective in many domains: speech, vision, language modeling, user
prediction, language understanding, translation, advertising, ...

An important tool in building

intelligent systems.

Google



Questions?

Joint work with many collaborators! Further reading:

* Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng. Building High-Level Features Using Large Scale
Unsupervised Learning, ICML 201 2.

® Dean, et al., Large Scale Distributed Deep Networks, NIPS,2012.

* Mikolov, Sutskever, Chen, Corrado and Dean. Distributed Representations of Words and Phrases and their
Compositionality, http://arxiv.org/abs/1310.4546. NIPS, 201 3.

» Zeiler, Ranzato, Monga, Mao, Yang, Le, Nguyen, Senior,Vanhoucke, Dean, Hinton. On Rectified Units for
Speech Processing. ICASSP 201 3.

* Heigold,Vanhoucke, Senior, Nguyen, Ranzato, Devin and Dean. Multilingual Acoustic Models using
Distributed Deep Neural Networks, ICASSP 2013.

* Sutskever,Vinyals, and Le. Sequence to Sequence Learning with Neural Networks, http://arxiv.org/abs/
1409.3215. NIPS,2014.

* Vinyals, Toshev, Bengio, and Erhan. Show and Tell: A Neural Image Caption Generator. http://arxiv.org/abs/
1411.4555

We’re having lots of fun and we’re hiring!

g.co/ml-jobs

GO« ,glc


http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1411.4555
http://g.co/ml-jobs

