
© 2015 IBM Corporation

Keith Campbell – IBM Java Technology Center

March 20th, 2015

Hands-on Lab: Accessing the
GPU from Java
S5823

© 2015 IBM Corporation

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION

CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED

ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE

DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT

PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE

OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR

SUPPLIERS AND/OR LICENSORS

2

© 2015 IBM Corporation 3

About me

 A member of the Java Technology Centre in Ottawa, Canada

 Working on various tools & runtime technologies for >20 years

 Experience with open source communities

 Currently focused on bringing the power of GPUs to the Java

ecosystem

 keithc@ca.ibm.com

© 2015 IBM Corporation 4

Workshop objectives

 Learn how to take an existing C kernel and build it so that it can be used with CUDA4J

 See how an application can control the process of data transfer and invoke the kernel, all

from Java using CUDA4J

 Get a sense of how much JNI code you can avoid writing by using CUDA4J

 See how the Java 8 enablement of lambdas for GPU can remove the need for coding in C

altogether

© 2015 IBM Corporation 5

Workshop outline

 15 minutes of slides which will introduce CUDA4J and Java 8 lambda support

 40 minutes of hands-on exploration with several implementations of Conway's Game of Life

© 2015 IBM Corporation 6

CUDA4J: Bringing GPU programming to Java

 A Java API that reflects the concepts familiar in CUDA programming

 Makes use of Java idioms: exceptions, automatic resource management, etc.

 Handle copying data to/from the GPU, flow of control from Java to GPU and

back, etc.

 Ability to invoke existing GPU code modules from Java applications

CudaDevice – a CUDA capable GPU device

CudaBuffer – a region of memory on the GPU

CudaModule – user library of kernels to loaded onto the GPU

CudaKernel – for launching a device function

CudaFunction – a kernel's entry point

CudaEvent – for timing and synchronization

CudaException – for when something goes wrong

new Java APIs

© 2015 IBM Corporation 7

Fundamental types in CUDA4J

CudaBuffer
CudaBuffer

 PTX

.func add { … }

.func foo { … }

.func bar { … }

CudaEvent

CudaFunction

CudaGlobal

CudaLinker

Java CudaSurface

CudaTexture

CudaDevice

CudaDevice
CudaModule CudaKernel

CudaKernel

CudaBuffer
CudaBuffer

CudaGrid

add{}

Device events

CudaStream

CudaModule

Relationship for generating an instance

Relationship as an argument

Used to combine multiple cubin/fatbin/PTXs

into single module

Corresponds to a HW feature in GPU

CudaFunction
foo{}

execution
engine

device
memory

© 2015 IBM Corporation 8

native module
containing the kernel

first GPU device

grid of kernels that
will execute this task

move data from
Java heap to device

invoke the task

Explicit GPU vector addition in Java

move the result back to
the Java heap

© 2015 IBM Corporation 9

Availability

 Currently available in Java 7.1 and Java 8 on POWER 8 Little Endian, running Ubuntu 14.10

and CUDA 5.5-54

 Download Java at http://www.ibm.com/developerworks/java/jdk/linux/download.html

 Supported hardware is POWER 8 model 824L with one or two Tesla K40m GPUs

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html

© 2015 IBM Corporation 10

CUDA4J documentation

 http://www-01.ibm.com/support/knowledgecenter/

SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html

© 2015 IBM Corporation 11

Beyond specific APIs – Java 8 streams

 Streams allow developers to express computation as aggregate parallel operations on data

 For example:

IntStream.range(0, N).parallel().forEach(i -> c[i] = a[i] + b[i]);

creates a stream whose operations can be executed in parallel

 What if we could recognize the terminal operation and conduct it on the GPU?
√ reuses standard Java idioms, so no code changes required

√ no knowledge of GPU programming model required by the application developer

– but no low-level manipulation of the device – the Java implementation has the controls

– future smarts introduced into the JIT do not require application code changes

© 2015 IBM Corporation 12

JIT optimized GPU acceleration

 Early steps

 Recognize a limited set of operations within lambda expressions,

• notably, no object references maintained on GPU

 Default grid dimensions and operating parameters for the GPU workload

 Redundant/pessimistic data transfer between host and device
• not using GPU shared memory

 Limited heuristics about when to invoke the GPU and when to

generate CPU instructions

 As the JIT compiles a stream expression we can identify candidates for GPU off-loading

 arrays copied to and from the device implicitly

 Java operations mapped to GPU kernel operations

 preserves the standard Java syntax and semantics
bytecodes

intermediate
representation

optimizer

CPU GPU

code generator code generator

PTX ISA CPU native

© 2015 IBM Corporation 13

JIT / GPU optimization of Lambda expression

JIT recognized Java code for matrix
multiplication using Java 8 parallel stream

Speed-up factor when run on a GPU enabled host

IBM Power 8 with Nvidia K40m GPU

© 2015 IBM Corporation 14

JIT heuristics for when a lambda can compile for the GPU

 Your mileage may vary, but the intention is:

 Supported:

 variables and one-dimensional arrays of all Java primitive types

 locals, parameters, and instance variables. Static variables generally will not be

supported but in some cases can be handled by JIT

 all Java operators except “instanceof”

 all Java expressions and statements except for new, throw, and method invocations

 standard Java exceptions: NPE, AOB, arithmetic

 Not supported:

 method invocations, although some method invocations might be handled by JIT

 intermediate operations like map, filter, etc.

 user exceptions

© 2015 IBM Corporation 15

Enabling the JIT compilation of code for the GPU

 See http://www-01.ibm.com/support/knowledgecenter

/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu

-Xjit:enableGPU={default|enforce|verbose} (and combinations)
where:

 default enables graphics processor unit (GPU) support based on performance heuristics
 enforce attempts to send all parallel.forEach() calls to the GPU irrespective of performance heuristics
 verbose generates output that reports which parallel.forEach() calls are sent to the GPU

For example:

-Xjit:enableGPU={enforce|verbose}

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html%23xjit__gpu

© 2015 IBM Corporation 16

Hands-on

 Conway's Game of Life

– cellular automata

– hence so-called “embarrassingly” parallel

 Suggested activities:

 Make sure you understand what Game of Life is:

 http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

 check out evolution of acorn at http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/

 5206 generations to stabilize on a 300 x 280 grid → ~437M cell calculations

 Compile the CUDA4J implementation and run the C kernel with it

 Tinker to your heart's content with the kernel. For example, replace the double-nested

loop over neighbors with a single non-looping statement that accumulates the sum of the

nine cells. Rerun. Depending on how busy the machine is, you may be able to observe a

performance effect.

 Optional: Run the lambda version. Use the necessary JIT options to enable the lambda

to run on the GPU and observe (see run-lambda.sh).

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/

© 2015 IBM Corporation 17

Copyright and Trademarks

© IBM Corporation 2015. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International

Business Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright and

trademark information” page at URL: www.ibm.com/legal/copytrade.shtml

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

