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Summary: A nearest neighbor search with product quantization is a prominent method that achieves a high precision search with less memory consumption than an exhaustive way In order to accomplish a large size search with a largeSummary: A nearest neighbor search with product quantization is a prominent method that achieves a high-precision search with less memory consumption than an exhaustive way. In order to accomplish a large size search with a large 
reference data the search method have to be accelerated by using parallel systems such as multicore processors and GPGPU (General Purpose computing on GPU) systems The distance calculation between a query and a referencereference data, the search method have to be accelerated by using parallel systems such as multicore processors and GPGPU (General Purpose computing on GPU) systems. The distance calculation between a query and a reference 
data is an independent operation that is easily parallelized but the reduction computation of distances after that is not completely parallel so this leads to performance degradation Therefore in order to maximize a speedup the adequatedata is an independent operation that is easily parallelized, but the reduction computation of distances after that is not completely parallel, so this leads to performance degradation. Therefore, in order to maximize a speedup, the adequate 
parameter selection is required in terms of parallelism In this paper the baseline of parallelization of the nearest neighbor search with product quantization is described and the validity of our approach (Optimistic Search) which utilizesparameter selection is required in terms of parallelism. In this paper, the baseline of parallelization of the nearest neighbor search with product quantization is described, and the validity of our approach (Optimistic Search), which utilizes 
small number of candidates of nearest neighbors is discussed with experiments We also show the effectiveness of pseudo matrix transposition for the sake of the efficient search In addition the method for autotuning is proposed and itssmall number of candidates of nearest neighbors, is discussed with experiments. We also show the effectiveness of pseudo matrix transposition for the sake of the efficient search. In addition, the method for autotuning is proposed and its 
effectiveness is empirically confirmed.effectiveness is empirically confirmed.
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Conclusions: In this paper, the baseline of parallelization of the nearest neighbor search with product quantization is described. Our implementation on Nvidia GTX 680 systems achieves a speedup of about 10 times compared with intelConclusions: In this paper, the baseline of parallelization of the nearest neighbor search with product quantization is described. Our implementation on Nvidia GTX 680 systems achieves a speedup of about 10 times compared with intel 
C i7 3770K I d t h th ffi i f th h O ti i ti S h hi h tili ll b f did t f t i hb W l di th ff ti f d t i t iti f thCore i7-3770K. In order to enhance the efficiency of the search, we propose Optimistic Search, which utilizes a small number of candidates of nearest neighbors. We also discuss the effectiveness of pseudo matrix transposition for the y , p p p , g p p
ffi i t h d h th t th b f did t f t i hb i d d b 50% I dditi t t i th d th t i t f th li i ti d th l t th d B iefficient search and show that the number of candidates of nearest neighbors is reduced by over 50%. In addition, we propose an autotuning method that consists of the preliminary executions and the least squares method. By using 

parameters that are determined by the preliminary executions the trend of the predicted execution times is identical to the trend of the measured execution times Thus the validity of our approach of the autotuning is also empiricallyparameters that are determined by the preliminary executions, the trend of the predicted execution times is identical to the trend of the measured execution times. Thus, the validity of our approach of the autotuning is also empirically 
confirmed In the near future we will implement our autotuning method on other GPGPU systems and evaluate the effectiveness of our approach by experimentsconfirmed. In the near future, we will implement our autotuning method on other GPGPU systems, and evaluate the effectiveness of our approach by experiments.
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