
I l i f N N i hb S h GPGPUImplementation of Nearest Neighbor Search on GPGPU systemsImplementation of Nearest Neighbor Search on GPGPU systemsImplementation of Nearest Neighbor Search on GPGPU systemsp g y
Aki hi W k i (K U i i JAPAN)Akiyoshi Wakatani (Konan University JAPAN)Akiyoshi Wakatani (Konan University JAPAN)Akiyoshi Wakatani (Konan University, JAPAN)y (y,)

Summary: A nearest neighbor search with product quantization is a prominent method that achieves a high precision search with less memory consumption than an exhaustive way In order to accomplish a large size search with a largeSummary: A nearest neighbor search with product quantization is a prominent method that achieves a high-precision search with less memory consumption than an exhaustive way. In order to accomplish a large size search with a large
reference data the search method have to be accelerated by using parallel systems such as multicore processors and GPGPU (General Purpose computing on GPU) systems The distance calculation between a query and a referencereference data, the search method have to be accelerated by using parallel systems such as multicore processors and GPGPU (General Purpose computing on GPU) systems. The distance calculation between a query and a reference
data is an independent operation that is easily parallelized but the reduction computation of distances after that is not completely parallel so this leads to performance degradation Therefore in order to maximize a speedup the adequatedata is an independent operation that is easily parallelized, but the reduction computation of distances after that is not completely parallel, so this leads to performance degradation. Therefore, in order to maximize a speedup, the adequate
parameter selection is required in terms of parallelism In this paper the baseline of parallelization of the nearest neighbor search with product quantization is described and the validity of our approach (Optimistic Search) which utilizesparameter selection is required in terms of parallelism. In this paper, the baseline of parallelization of the nearest neighbor search with product quantization is described, and the validity of our approach (Optimistic Search), which utilizes
small number of candidates of nearest neighbors is discussed with experiments We also show the effectiveness of pseudo matrix transposition for the sake of the efficient search In addition the method for autotuning is proposed and itssmall number of candidates of nearest neighbors, is discussed with experiments. We also show the effectiveness of pseudo matrix transposition for the sake of the efficient search. In addition, the method for autotuning is proposed and its
effectiveness is empirically confirmed.effectiveness is empirically confirmed.

Nearest neighbor sear h ith prod t q anti ation and its paralleli ationNearest neighbor search with product quantization and its parallelizationNearest neighbor search with product quantization and its parallelization

P ll li iParallelization
O GPU i d fi d K i hb

Parallelization
generation of On GPU, in order to find K nearest neighbors,generation of
i d i d

, g ,
each thread (totally P threads) find m nearestinverted index each thread (totally, P threads) find m nearest

hb d d d hneighbor candidates, and then K nearestThread 0
query

e g bo ca d da es, a d e ea es
neighbor are found among P*m candidates

Thread 0
q y neighbor are found among P*m candidates.

Thread 1 So, m must be as small as possible to enhanceThread 1 So, m must be as small as possible to enhance
th ll li (K/P< <K) N t th t hTh d

f d
the parallelism (K/P<m<K). Note that each Thread 2

Reference data thread block of a GPU is in charge of each
h d

thread block of a GPU is in charge of each
d ll th th d i bl k

Thread 3

C l l h di f h
query, and all the threads in a block

3

Calculate the distance of the query
q y,
collectively determine the nearest neighborsq y

and reference data and find the
collectively determine the nearest neighbors

f hKEach data is quantized byand reference data and find the Select the nearest indices for the Select the nearest neighbors of the query. m KEach data is quantized by
product quantization methodnearest neighbor

Select the nearest indices for the
search b the coarse

Se ect t e ea est e g bo s
linked to the selected

q y
product quantization method.ea est e g bo

but very large computation
search by the coarse linked to the selected

but, very large computation quantization indices.quantization. indices.

Results and discussionResults and discussionResults and discussion
Optimal number of nearest neighbor candidates (m) and pseudo matrix transposition AutotuningOptimal number of nearest neighbor candidates (m) and pseudo matrix transposition Autotuning

Th dThread 1 Thread 2 The optimal parallelism and the usage of LUT (lookup table)
Thread 0 Thread 0

ead
Thread 3 100

Reduced
The optimal parallelism and the usage of LUT (lookup table)
h ld b d t i d i d t h th fK 256Thread 0

h d
Thread 0 Thread 3

Pseudo 98
Reduced

1 8should be determined in order to enhance the performance. K=256
Thread 1

Pseudo
t i 96

9 1.8
Prediction (no

p
The prediction of the execution time is as follows:matrix 96 1.6 Prediction (no

LUT)
The prediction of the execution time is as follows:

h i i i hThread 2 transposition 94 1 4
LUT)T1: the execution time without LUT Thread 2 transposition

92%
) 1.4

s)

1
T : the execution time using LUT92

l
(% P=4 1.2e
 (

Prediction
T2: the execution time using LUT

Thread 3 90

ca
ll

P=4, trans. 1m
e Prediction

(LUT)mmmNDmN 2Thread 3
88

R
e

c 4,

P=16
1

d
 t

i (LUT)mmmNDmN
T 111)( 

86

R P=16

P 6
0.8

se
dPP

T 111)
442

( 
86 P=16, trans.

0 6a
p

s

MeasurementKKK
PP
2

442
84 0.6

E
la Measurement

(no LUT)
KKK

mP
2

)( 
It i lik l th t th t i hb i 82 0.4E (no LUT)mP2)

442
( 

It is very likely that the nearest neighbor is a
8

82

0 2

4

2
442y y g

reference data that is linked to the nearest This assignment guarantees that there is
80 0.2

MeasurementmmmNDmN
T

2

)(
reference data that is linked to the nearest

i d h hi i l d
This assignment guarantees that there is
h i hb i h f d

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0
Measurement
(LUT)PP

T 122)
442

( 
index to the query. So, this assignment leads the nearest neighbor in the reference data 1 2 4 8 16 32 64 128 256

(LUT)PP 442q y , g
to the increase of nearest neighbor

g
for each thread with an equal probability

1 2 4 8 16 32 64 128 256
No of threads per thread blockKKK 2

to the increase of nearest neighbor for each thread with an equal probability. 100
No. of threads per thread block

pWDC
KKK

mP 32)( K=256candidates . 98
R d d133

p32)
442

(K=256candidates .
96

98
Reduced133

The absolute values of predicted execution times areN’ h b f f d96
P=256100 The absolute values of predicted execution times are N’: the number of reference data

94

)

5
36 not completely identical to the measured executionD: the dimensions of vectors

92(%
)

P=256 trans
not completely identical to the measured execution
ti H th t d f th lt llCp: the size of codebook of product quantization

90

9

ll
 (P=256, trans.

11

m

times. However, the trend of the results are generallyp b p q
α α α β β : constant parameters that are90

ca
l11

710m similar to each other Therefore the validity of our
α1, α2, α3, β1, β2: constant parameters that are

determined by the least squares method88

R
e

c

P=10244 4 5
710 similar to each other. Therefore, the validity of our

i h i i i ll fi d
determined by the least squares method

86

R4
3 4

The selection of m autotuning approach is empirically confirmed.ND)2( 
84 P=1024,

The selection of m
i d i d

g pp p yND
Popt

11
1

)2( 
84 P 1024,

trans.1 is determined. Kopt
2

1 
82

t a s.1
8 16 32 64 128 256 512

2

GPGPU system : PC withIntel Core i7-3770K CPU, 8 GB80
8 16 32 64 128 256 512

P (f th d th d bl k) ND)2(  GPGPU system : PC withIntel Core i7 3770K CPU, 8 GB
d N idi GTX 680 GPU d C tOS 6 40 1 2 3 4 5 6 7

P (no. of threads per thread block) ND
Popt

12
2

)2( 


memory and Nvidia GTX 680 GPU under CentOS 6.4.0 1 2 3 4 5 6 7
m-(K/P)K=16 K=64 K=256 K-1024 Kopt

2
2 m-(K/P)K=16 K=64 K=256 K 1024 2

Conclusions: In this paper, the baseline of parallelization of the nearest neighbor search with product quantization is described. Our implementation on Nvidia GTX 680 systems achieves a speedup of about 10 times compared with intelConclusions: In this paper, the baseline of parallelization of the nearest neighbor search with product quantization is described. Our implementation on Nvidia GTX 680 systems achieves a speedup of about 10 times compared with intel
C i7 3770K I d t h th ffi i f th h O ti i ti S h hi h tili ll b f did t f t i hb W l di th ff ti f d t i t iti f thCore i7-3770K. In order to enhance the efficiency of the search, we propose Optimistic Search, which utilizes a small number of candidates of nearest neighbors. We also discuss the effectiveness of pseudo matrix transposition for the y , p p p , g p p
ffi i t h d h th t th b f did t f t i hb i d d b 50% I dditi t t i th d th t i t f th li i ti d th l t th d B iefficient search and show that the number of candidates of nearest neighbors is reduced by over 50%. In addition, we propose an autotuning method that consists of the preliminary executions and the least squares method. By using

parameters that are determined by the preliminary executions the trend of the predicted execution times is identical to the trend of the measured execution times Thus the validity of our approach of the autotuning is also empiricallyparameters that are determined by the preliminary executions, the trend of the predicted execution times is identical to the trend of the measured execution times. Thus, the validity of our approach of the autotuning is also empirically
confirmed In the near future we will implement our autotuning method on other GPGPU systems and evaluate the effectiveness of our approach by experimentsconfirmed. In the near future, we will implement our autotuning method on other GPGPU systems, and evaluate the effectiveness of our approach by experiments.

Contact:Contact:
Akiyoshi Wakatani (Konan University Faculty of Intelligence and Informatics) Email: wakatani @konan u ac jp FAX +81 78 435 2540Akiyoshi Wakatani (Konan University, Faculty of Intelligence and Informatics) Email: wakatani @konan-u.ac.jp FAX +81-78-435-2540

contact Name

Akiyoshi Wakatani: wakatani@konan-u.ac.jp
Poster

P5103

Category: Developer - Algorithms - DA01

