
Atomic Level Simulation of Morphological Evolution in Multi-Phase Crystalline
Systems

David Concha†, E. Karrels ‡, Maria Pantoja‡, Eric Shono ⃰, and Robert Marks ⃰
†Dept. Computer Vision, Univ. Rey Juan Carlos Madrid Spain

‡Dept. Computer Science and Engineering. Santa Clara University, Santa Clara, CA
 ⃰Dept. Mechanical Engineering. Santa Clara University, Santa Clara, CA

Contact email:david.concha@urjc.es

2. Problem Statement

1. Abstract
Computer simulation of microstructure development and evolution during materials processing and service has
been of increasing interest. We develop an atomic-level simulation aimed at revealing microstructural features
that are closely tied to interfacial energies in materials. Interfacial energies impact several manufacturing
processes such as the stability of thin films during semiconductor processing and the nucleation and growth of
precipitate particles such as artificial diamonds or other second-phase particles used to enhance mechanical
properties. We simulate time dependent atomic jumping (diffusion) on a 1000X1000 square lattice. Input
parameters may be tuned to promote mixing of different atom types or maintain distinct chemical phases

Coalescent Memory Access

Results

Atom are affected by a 3x3.
Each thread computes the jump of an atom
at the center of the grid (X).

Horizontal and vertical displacement to calculate
atoms jumps

Triple junction interface Boundary region Corner

Possible selections for the jumping
atom

Affected area for jumping atoms. Each
non-jumping atom contributes to overall
E based on atom type, and atom
location 3. Parallel Algorithm.

temperature equivalent to kBT = φ AA = φBB = 5φ AB . initial state a 250 X 500 array of red atoms embedded within a
matrix of blue atoms, the white area in the image corresponds to a void in the material. Initially, red and blue atoms
near the void surfacebreak free from the array (1M); the less color dense region simulates a vapor phase (1M/30M).
Some roughening of the red/blue interface is observed (30M) since the attraction between red and blue atoms is not
as strong as that between like atoms, the vapor phase is lost (100M). This results in a coalescence of red atoms with
red atoms and blue atoms with blue atoms where the vapor phase was originally located, and ultimately the smaller
red regions join with the original red phase (370M/2000M) via a dissolution and re-precipitation mechanism.
Indeed some evolution in the morphology of the red phase occurs as the simulation proceeds, and perhaps there is a
preference for interfaces oriented along the diagonal directions of the lattice.

Lower temperature equivalent to 2kBT = φ AA = φBB = 5φ AB using the final state from the high-temperature
simulation as our starting point. Equivalent to inducing a sudden cooling to an experimental specimen, and one
observes the immediate formation of a very fine dispersion of voids and red particles from the initially
supersaturated state. Similarly, voids and blue particles precipitate inside the central red particle.
As the simulation ensues, the particles coarsen (driven by a reduction in ∫γ d A), and shape evolution of the central
red particle continues. Since the attraction between red and blue atoms is week, they prefer to remain detached
from one another, separated by a band of vapor. The stochastic nature of the simulation leads to
continual variations in the shapes of these particles, and larger particles are required to discern the features of an
equilibrium morphology. The central red particle, as well as the surrounding blue/void interface, still appear to
exhibit a tendency toward diagonal interfaces. Ultimately, at least two of the phases (red, blue, and vapor) should
evolve to become contiguous bodies.

CPU using multiple threads of control to operate on data simultaneously. Each thread chooses one random pixel,
checks if it meets the criteria for moving, and moves it if it does meet the criteria. With multiple threads running, it
is possible for them to perform conflicting actions. Therefore a series of locks are used to prevent conflicts. When
a thread selects a pixel to process, it acquires the lock or locks that cover the pixel and all the neighboring pixels
that can affect the outcome of the computation. The sizes of the squares of pixels associated with each lock can be
tuned. We found that having about 100 locks per active thread minimizes conflicts while not creating too much
overhead.

Threads
(4 core cpu)

Speedup

1 1
2 1.94
4 3.82
6 4.84
8 5.78
12 2.23
16 1.24

Threads blocks
(Nvidia K20 GPU)

Speedup

contact name

Robert Marks: rmarks@scu.edu
Poster

P5107

category: Visualization - in-situ & scientific - Vs01

