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x1x2x3x4 f= x1x2 �
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f �g

0000 0 0 0

0001 0 0 0

0010 0 0 0

0011 1 1 0

0100 0 0 0

0101 0 1 1

0110 1 1 0

0111 0 1 1

1000 0 0 0

1001 0 1 1

1010 0 1 1

1011 1 1 0

1100 1 1 0

1101 1 1 0

1110 0 1 1

1111 1 1 0
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0 7 - 6

01 11 1 10

02 7 2 6

03 7 3 6

04 6 4 5

012 11 12 10

013 11 13 10

014 10 14 9

023 7 23 6

024 6 24 5

034 6 34 5

0123 11 123 10

0124 10 124 9

0134 10 134 9

0234 6 234 5

01234 10 1234 9

Table 1. Example of Hamming Distances Between Functions. Table 2. Example of Hamming Distances Among Functions.

Figure 2. Block Diagram of the Asymmetry Computation

The asymmetry of a Boolean function f is the fewest truth table entries
that must be changed to convert f into a symmetric function.That is, the
asymmetry of f is the minimum Hamming distance f is from a symmetric
function. For example,the 3-variable function f =x x x has asymmetry 0,1 2 3

since it is symmetric,while f = x x x + x has asymmetry 1,since it is1 2 3 1 2 3x x
not symmetric,and only one truth table entry must be changed to make it
symmetric (that associated with x x x = 001). As in the case of bent1 2 3

functions,one can analyze the asymmetry of a function by computing the
Hamming distance between it and all symmetric functions. There are 2

(n+1)

symmetric functions, and our program enumerates all for each function,
determining the smallest Hamming distance.

Consider Table I. Here, an example 3-variable function is compared
against one of the 16 3-variable symmetric functions. They differ in 5
entries.

Table II shows the distance this example function is from all 3-variable
symmetric functions. The entry highlighted in green is the same
symmetric function shown inTable I.Among all symmetric functions, the
smallest distance is 5. Thus,this function has asymmetry 5.

Many systems that encrypt and decrypt plaintext
messages use Boolean functions with specific properties.
Bent Boolean functions, which are the most nonlinear of
Boolean functions, have strong immunity to an attack
(breaking of the code) that is based on linear functions.
The only known approach to generating all bent functions
is exhaustive search. Research into bent functions has
inspired research into functions with similar properties.
We have focused on asymmetric functions, especially
those functions with large asymmetry. In the research
reported here, we have extended our study of bent
functions through exhaustive enumeration to maximally
asymmetric functions. We show that a K20 GPU
processor can achieve a computation speedup of 150
times that of a serial processor.
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Figure 1 shows the distribution of 4-variable functions according to asymmetry.
For example, 32 have 0 asymmetry.These are the 32 symmetric functions.
Also, Figure 1 shows that there are 2,880 functions that have a maximum
asymmetry of 7.

The following is an outline of the problem implemented in sequential and
parallel CUDA C code.

Create Function under test.

Number of bits (do separate programs for 2,3,4,5 – consolidate of time permits)

Function generator – ie. For n=4 there are 64000 functions to test.

For n=4 Create 2^(2^n) bit variables which is a 16-bit variable, 2-bytes or short
unsigned int. Lab 8 hand out says use a simple counter, add bits, do the masking.

( n=2 is 4-bit
n=3 is 8-bit
n=4 is 16-bit
n=5 is 32-bit)

Create array of semetric functions.

Unsigned int n2_table(32) = 32 values for bits as integers.
function generator.
For i=0 to 2^16 i++ – unsigned i

Exclusive or of symmetric function.
For j=0 to j<32;j++    - 32 4-bit symmetric functions

N2_table(j) = 0,1, …. To (01234 = 255)
So n2_table(j) xor I
Tally bits – right shift 0 to 15 bits and add (other methods possible)

Example of symmetric functions
Tables, for n=2, there are 8 symmetric functions: 0, 1, 6, 7, 8, 9, 14, 15

For n = 3, there are 16: 0, 1, 22, 23, 104, 105, 126, 127,128, 129, 150, 151, 232,
233, 254, 255

Errors or Problems Encountered During Programming

� The C and CUDA C programming proceeded relatively easily. Problems occurred
testing for N = 5 functions, which used 32-bit integers.

o Using standard C 32-bit unsigned or 'long int' were needed to test half of the
functions

* Doubling got the correct numbers.
o Using CUDA C host memory allocation limits per process errors occurred.

* This error occurred using half, or 2^31 functions in one call.
* Solving occurred by reducing the function calls until the error went away.
* Then loop to call the kernel until all functions were tested.

o This allowed testing of all 2^32 functions and confirmed that doubling the results
for a test of the first half, 2^31, functions was correct.

* Using 'long int' was used in CUDA C.

The final three tables show the timing summaries using the Linux 'time' function
found in the directory '/usr/bin'.This might be what an end user (customer) might
see.Using this for all programs established a common timing environment for,at the
very least, the total wall clock time.This allows for some interesting average times
processing each function under test.

Figures 2 and 3 show a block diagram of asymmetry computation and an
architecture of the asymmetry computation respectively.

Figure 3. Architecture of the Asymmetry Computation
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Figure 1. Distribution of 4-Variable Functions to Non-Symmetry
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