
Modified Implicit Bernstein Form and its GPU Parallelization for computing the Bernstein
Coefficients of a polynomial

P S Dhabe and P S V Nataraj,
CUDA Center of Excellence,

Indian Institute of Technology, Bombay , India
Abstract:- We consider the problem of efficiently computing the Bernstein coefficients (BCs) of a polynomial on a box like domain. Recently, Smith [1] proposed the
so-called Implicit Bernstein Form (IBF) for efficiently computing the BCs. The IBF is useful in polynomial global optimization solvers, see [2], [3]. In this work, we
present a parallel version for computing the BCs, which we call as the Modified IBF, or simply, MIBF. In the MIBF, we can avoid many redundant computations,
when each term contain only few variables, as typically is the case [4]. Using the MIBF, we obtained speedups of up to 84x for a 15 variable polynomial using
NVIDIA’s Tesla K20 and CUDA.
Motivation:- In the IBF mentioned above, if the domain spans several orthants, or if the
variables occurring in polynomial terms fail to pass the uniqueness, monotonicity, or dominance
tests, then we need to explicitly compute all the BCs, see [1]. That is, if each polynomial term
contains only few variables, then IBF may involve many redundant computations. For instance,
in the data structure TermBC described, we see that each BC of term3 is computed 4 times
using IBF! We attempt to cut down on these redundant computations using the proposed
MIBF. In MIBF, we use TermBC to compute BCs exactly as required. Computing all the BCs using
MIBF can easily be parallelized on GPUs using NVIDIA’s CUDA.

References
[1] Smith A P, Fast construction of constant bound functions for sparse polynomials, Journal of Global Optimization, 45, 445-458, March 2009.
[2] J. Garloff, The Bernstein Algorithm, Interval Computations, 2:164-168, 1 993
[3] P. S. V. Nataraj and S. Ray, An efficient algorithm for range computation of polynomials using the Bernstein form, Journal of Global Optimization, 45:3, 403-426, Nov.
 2009.
[4] J. Verschelde, The PHC pack, the database of polynomial systems, Technical report, University of Illinois, Mathematics department, Chicago, USA, 2001

Conclusion:-
The speedup obtained via GPU parallelization of MIBF is 84x , for a 15 variable
polynomial. Serial time complexity of can be reduced to in CUDA
parallel implementation.

)()1(+lnO)(tnO

[]32
21

3
321 0,1on)(xxxxxxp ++=

Serial Algorithm of MIBF

end

end

sum

i

end

TermBC[q];sumsum

TermBCq

jTermBCiq

ttojfor

sum

ntoifor

TermBCs

p(x)IBCs

begin

B

tnlp(x)

th

thth

l

;B[i]

memoryCPUin location at BCcomputed theStoreStep3.3.

sumin from th value theAddStep3.2.

termforin multiindexofindex ComputeStep3.1.

1

;0.0

)1(1

BCs theallcomputeExplicitlyStep3.

memory.linear in itstoreandComputeStep2.

[1].in asfor)(tsCoefficienBernstein Implicit Compute1.Step

matrix BC-:Output

; termsofNo.,degreemaximumof variablesdomain x,on-:Input

=

+=

=
=

+=

Platform Used
Intel’s i7 3.06 GHz, Tesla k 20, Windows-7, VC++ on VS2010, CUDA toolkit- 5.5

GPU parallelization of MIBF
We are parallelizing Step3 of serial algorithm, by launching CUDA
threads. We store TermBC in GPU shared memory and computed BCs are
stored in GPU global memory.

ln)1(+

0 5 10 15

x 10
6

0

1

2

3

4

5

6

7

8
x 10

4 comparison of serial and parallel execution of MIBF

Number of Bernstein coefficients

Ti
m

e
in

 m
illi

se
co

nd
s

CPU time
GPU time

Data structure
TermBC

BCs Serial
time
(A)

Parallel
Time

(B)

Speedup
A/B

16807 1.9 0.271 7.01
262144 40.46 1.57 25.77

9765625 21049.95 321.66 65.44
14348907 71585.91 850.05 84.21

Comparison of serial and parallel
Executions (msec.)

contact name

Nataraj Paluri: nataraj@sc.iitb.ac.in
Poster

P5109

category: DeveloPer - Algorithms - DA02

