CATEGORY: DEVELOPER - ALGORITHMS - DAO2

POSTER CONTACT NAME

P5109 Nataraj Paluri: nataraj@sc.iitb.ac.in

Modified Implicit Bernstein Form and its GPU Parallelization for computing the Bernstein I

Coefficients of a polynomial e

P S Dhabe and P S V Nataraj,
Abstract:- We consider the problem of efficiently computing the Bernstein coefficients (BCs) of a polynomial on a box like domain. Recently, Smith [1] proposed the
so-called Implicit Bernstein Form (IBF) for efficiently computing the BCs. The IBF is useful in polynomial global optimization solvers, see [2], [3]. In this work, we
present a parallel version for computing the BCs, which we call as the Modified IBF, or simply, MIBF. In the MIBF, we can avoid many redundant computations,

when each term contain only few variables, as typically is the case [4]. Using the MIBF, we obtained speedups of up to 84x for a 15 variable polynomial using
NVIDIA’s Tesla K20 and CUDA.

2" -

Motivation:- In the IBF mentioned above, if the domain spans several orthants, or if the pP(x) =x, +x,x; +x,x5 on [(),l]3
variables occurring in polynomial terms fail to pass the uniqueness, monotonicity, or dominance (3. 3.) (<. X5. %3) EPENE
tests, then we need to explicitly compute all the BCs, see [1]. That is, if each polynomial term | rermec
contains only few variables, then IBF may involve many redundant computations. For instance, = o = v ._ |
. : : . (0.x.>) —> 0 [© (%.0.0) >0 | © (0.0.)—>0 [o (0.0.0))
in the data structure TermBC described, we see that each BC of term3 is computed 4 times 1 I — —~— | .00
using IBF! We attempt to cut down on these redundant computations using the proposed (1.>x.>) —>1 |1 C<.0.D —>1 | i (0.1.>9—1 ‘1 | 23-:
MIBF. In MIBF, we use TermBC to compute BCs exactly as required. Computing all the BCs using <.0.2)>2 [o (0.2 -2 [o B
MIBF can easily be parallelized on GPUs using NVIDIA’s CUDA. $ ‘
[(1.0, <) — 3 0
Serial Algorithm of MIBF Data structure 1.3 —>7 [05 | . ‘

Input : - p(x) on domain x, variables / of maximum degree n, No. of terms¢; TermBC : o e o o

Output : - BC matrix B ¥ STl T~ '1 i'

begin g

Step 1. Compute Implicit Bernstein Coefficients (/BCs) for p(x)asin|[1].

% 10" comparison of serial and parallel execution of MIBF

Step2. Compute 7ermBCs and store it in linear memory. °

________ CPU time BCs Serial Parallel Speedup
i ‘ time Time A/B

(A) (B)
16807 1.9 0271 7.01
262144 4046 157 25.77
9765625 21049.95 321.66 65.44

] 14348907 71585.91 850.05 34.21

Step3. Explicitly compute all the BCs
fori=1to (n+1)
sum = 0.0;

for j=1tot

Time in milliseconds

Step3.1. Compute index g of i”"multiindex in TermBC for j”term
Step3.2. Add the g th value from TermBC 1n sum
sum = sum +TermBC/q/,

Comparison of serial and parallel

end = s Executions (msec.)
Step3.3. Store the computed BC at i”location in CPU memory e Bemsiein cosfieients <10
. Y
B[1] = sum; Platform Used
end Intel’s i7 3.06 GHz, Tesla k 20, Windows-7, VC++ on VS2010, CUDA toolkit- 5.5
end PU parallelization of MIE Conclusion:-

We are parallelizing Step3 of serial algorithm, by launching (n—|—1)lCUDA The speedup obtained via GPU parallelizaltilon of MIBF is 84x , for a 15 variable
threads. We store TermBC in GPU shared memory and computed BCs are polynomial. Serial time complexity of 0(71(’)) can be reduced to O(tn) in CUDA
stored in GPU global memory. parallel implementation.

References

[1] Smith A P, Fast construction of constant bound functions for sparse polynomials, Journal of Global Optimization, 45, 445-458, March 2009.
[2] J. Garloff, The Bernstein Algorithm, Interval Computations, 2:164-168, 1 993

[3] P.S. V. Nataraj and S. Ray, An efficient algorithm for range computation of polynomials using the Bernstein form, Journal of Global Optimization, 45:3, 403-426, Nov.
20009.

[4] J. Verschelde, The PHC pack, the database of polynomial systems, Technical report, University of lllinois, Mathematics department, Chicago, USA, 2001

