

CUDA Based Fog Removal: Machine Vision For Automotive/Defence Applications KPIT

Ratul Wasnik, Amitabha Basu KPIT Technologies Ltd, Pune, India {ratul.wasnik, amitabha.basu} @kpit.com

Introduction

- The Proposed method describes the visibility enhancement of images captured in bad weather (Fog/Haze) conditions using Dark Channel Prior technique.
- It is computationally expensive(involves) large number of floating operations).
- Highly Data Parallel algorithm.

Algorithm Overview

Results

CUDA Optimized Functions

Transmission Estimation

Compute dark channel : $\min_{\omega} (\min_{c} \frac{I^{c}}{A^{c}}) = \left\{ \min_{\omega} (\min_{c} \frac{J^{c}}{A^{c}}) \right\} | t + 1 - t$

Estimate transmission: $t = 1 - \min_{\omega} (\min_{c} \frac{\Gamma}{A^{c}})$

 High speed floating operations per second of GPU provides almost 800+ x speed up over CPU implementation.

Optimized Transmission using Image Feathering

- Filter Output q
- Extend to the entire Image
- In all local windows ω_k , compute the linear coefficients
- covers pixel q_i The use of Texture fetches for coalesced memory access

• Compute the average of $a_k I_i + b_k$ in all ω_k that

- provides 50x speed up over CPU implementation.
- Scalable design to increase speed, accuracy and flexibility

Scene Radiance Image Construction

The final scene radiance J(x) is recovered by:

to: lower limit of the transmission in order to make J(x) noise free.

 Almost 850+ x speed up over CPU Implementation due to fast floating point math operations of GPU.

Performance Analysis

References

Kaiming He, Jian Sun, Xiaoou Tang, "Single Image Haze Removal Using Dark Channel Prior", 978-1-4244-3991-1/09 ©2009 IEEE.

 $b_x = \overline{p}_k - a \overline{I}_k$

 $q_i = \frac{1}{|\omega|} \sum_{k|i \in \omega_k} (a_k I_i + b_k)$

 $= \overline{a}_i I_i + \overline{b}_i$

- Zhaohua Liu, Yuxia Yang, Jingyu Yang, "Single Aerial Image De-Hazing and Its Parallel Computing", Journal of Surveying and Mapping Engineering Sep. 2013, Vol.1 Iss. 2, PP.33-40.
- NVIDIA Corporation, CUDA 5.0 for Windows CUDA 5.0 Programming Guide.
- Kaiming He, Jian Sun, and Xiaoou Tang, "Guided Image Filtering", European Conference on Computer Vision (ECCV) 2010.